การรับรู้จากระยะไกล มีอะไรบ้าง

�����Ũҡ������Ǩ������ (Remote Sensing)
������Ǩ�������繡�����Ǩ�ҡ������ ������ͧ����Ѵ����ա�������ʡѺ��觷���ͧ��õ�Ǩ�Ѵ�µç ��зӡ�����Ǩ���������ͧ�Ѵ������ҧ�ҡ��觷���ͧ��õ�Ǩ�Ѵ ���Ҩ�Դ�������ͧ�Ѵ�� ���ͧ�����Ҿ ����ѧ����٧ ������ٹ ������ͧ�Թ ����ǡ�� ���ʹ������ ��������¤����������俿�ҷ���� �����з�͹�Ҩҡ��觷���ͧ������Ǩ������㹡���Ѵ ������Ǩ�����Ըչ���繡���红����ŷ��������Ũӹǹ�ҡ 㹺���dz���ҧ���ҡ�����Ǩ�Ҿʹ�� �ҡ���������ͧ������Ǩ������ ������ͧ������Ǩ�����繷���ͧ�����ʡѺ�ѵ�ص�����ҧ �� ����ͧ�Թ���Ǩ���Ͷ����Ҿ������� ��������������Ǩ��Ѿ�ҡ÷ӡ���红����ž�鹼���š��������ҡ�Ҿ�繡���ʴ��Ҿ���·ҧ�ҡ�Ⱥ���dz����ŧ�ó�����Է����� ��зӡ�ë�͹�Ѻ�Ѻ�����Ţͺࢵ�Ҥ����С�������ª��ͧ���Թ �����������º��º�����ҧ�����������šѺ�������Ҥʹ�����Ǩ��������� �����Ũҡ������Ǩ�����Ũ������������´�ͧ�����Ź��¡��ҡ�����Ǩ�Ҥʹ�� ������ͺࢵ�ͧ������Ǩ�����ҧ���� ��Т����ŷ������繢����ŷ����ҡ����纵�����ҧ��§�������� ����͡���Ƕ֧෤����ա�����Ǩ������ ��ͧ���Сͺ���е�ͧ�Ԩ�óҤ��
  • �����������俿�� ��������ͷ��������������ҧ����ͧ�Ѵ �Ѻ�ѵ�ط���ͧ������Ǩ
  • ����ͧ����Ѵ ����繵�ǡ�˹���ǧ�����������俿�ҷ�����㹡�õ�Ǩ�Ѵ ��ʹ���ٻ�ѡɳТͧ�����ŷ��е�Ǩ�Ѵ��
  • �ҹ�����Դ�������ͧ����Ѵ ����繵�ǡ�˹����������ҧ����ͧ����Ѵ �Ѻ��觷���ͧ����Ѵ �ͺࢵ��鹷��������ͧ����Ѵ����ö��ͺ������ ��Ъ�ǧ����㹡�õ�Ǩ�Ѵ
  • ����Ť������¢ͧ�����ŷ����ҡ����Ѵ �ѹ�繡�кǹ���㹡���ŧ�����Ť������ ����ٻẺ�ͧ�����������俿�ҷ���Ѵ�� �͡�繢����ŷ���ͧ������Ǩ�Ѵ�ա���˹�觫�觨С����㹺��Ѵ�
ซึ่งโคจรผ่าน ข้อมูลวัตถุหรือปรากฏการณ์บนพื้นผิวโลกที่ถูกบันทึกถูกแปลงเป็นสัญญาณอิเล็กทรอนิกส์ส่งลงสู่สถานีรับภาคพื้นดิน (Receiving Station) และผลิตออกมาเป็นข้อมูลในรูปแบบของข้อมูลเชิงอนุมาน (Analog Data) และข้อมูลเชิงตัวเลข(DigitalData)เพื่อนำไปนำวิเคราะห์ข้อมูลต่อไป

2. การวิเคราะห์ข้อมูล (Data Analysis) วิธีการวิเคราะห์มีอยู่ 2 วิธี คือ
- การวิเคราะห์ด้วยสายตา (Visual Analysis) ที่ให้ผลข้อมูลออกมาในเชิงคุณภาพ (Quantitative) ไม่สามารถ วัดออกมาเป็นค่าตัวเลขได้แน่นอน
- การวิเคราะห์ด้วยคอมพิวเตอร์ (Digital Analysis) ที่ให้ผลข้อมูลในเชิงปริมาณ (Quantitative) ที่สามารถแสดงผลการวิเคราะห์ออกมาเป็นค่าตัวเลขได้

การวิเคราะห์หรือการจำแนกประเภทข้อมูลต้องคำนึงถึงหลักการดังต่อไปนี้
1. Multispectral Approach คือข้อมูลพื้นที่และเวลาเดียวกันที่ถูกบันทึกในหลายช่วงคลื่นซึ่งในแต่ละช่วงความยาวคลื่น(Band)ที่แตกต่างกันจะให้ค่าการสะท้อนพลังงานของวัตถุหรือพื้นผิวโลกที่แตกต่างกัน
2. Multitemporal Approach คือ การวิเคราะห์การเปลี่ยนแปลงไปตามกาลเวลา จำเป็นต้องใช้ข้อมูลหลายช่วงเวลาเพื่อนำมาเปรียบเทียบหาความแตกต่าง
3. Multilevel Approach คือ ระดับความละเอียดของข้อมูลในการจำแนกหรือวิเคราะห์ข้อมูล ซึ่งขึ้นอยู่กับการประยุกต์ใช้งาน เช่น การวิเคราะห์ในระดับภูมิภาคก็อาจใช้ข้อมูลจากดาวเทียม LANDSAT ที่มีรายละเอียดภาพปานกลาง (Medium Resolution) แต่ถ้าต้องการศึกษาวิเคราะห์ในระดับจุลภาค เช่น ผังเมือง ก็ต้องใช้ข้อมูลดาวเทียมที่ให้รายละเอียดภาพสูง (High Resolution) เช่น ข้อมูลจากดาวเทียม SPOT, IKONOS, หรือรูปถ่ายทางอากาศเป็นต้น

อ้างอิงแหล่งที่มาของข้อมูล/ภาพ

//www.rmutphysics.com/charud/oldnews/201/sattlelite/6.htm
//www.alumni.forest.ku.ac.th/index.php?
//www.sahavicha.com/?name=knowledge&file=readknowledge&id=2641&t=%CA%D8%B4%C2%CD%B4%E0%B7%A4%E2%B9%E2%C5%C2%D5

การใช้ที่ดิน

- รีโมทเซนซิง สามารถใช้แปล รูปแบบการใช้ที่ดินประเภทต่างๆ และนำผลลัพธ์ที่ได้มาจัดทำแผนที่การใช้ที่ดิน

- รีโมทเซนซิง นำมาใช้สนับสนุนติดตามและประเมินแนวโน้มการใช้ที่ดินประเภทต่างๆ เช่น ด้านการเกษตร พื้นที่ป่าไม้ เป็นต้น

การเกษตร

- ภาพถ่ายจากดาวเทียมใช้สำรวจบริเวณพื้นที่เพาะปลูกพืชเศรษฐกิจเช่น พื้นที่ปลูกข้าว ปาล์มน้ำมัน ยางพารา สัปปะรด อ้อย ข้าวโพด ฯลฯ

- ผลลัพธ์จากการแปลภาพใช้ประเมินการเปลี่ยนแปลงการเพาะปลูกพืชเศรษฐกิจในแง่ปริมาณ ราคา ช่วงเวลา ฯลฯ

- ติดตามขอบเขตและความอุดมสมบูรณ์ของพื้นที่ป่าและเขตอนุรักษ์พันธุ์ไม้

- ประเมินบริเวณพื้นที่ที่เหมาะสม (มีศักยภาพ) ในการปลูกพืชต่าง ๆ เช่น ข้าว ปาล์มน้ำมัน มันสำปะหลัง เป็นต้น

ป่าไม้

- ติดตามการเปลี่ยนแปลงพื้นที่ป่าไม้จากการแปลภาพถ่ายจากดาวเทียม เช่น ป่าดงดิบ ป่าดิบชื้น ป่าเต็งรัง ป่าชายเลน เป็นต้น

- ผลลัพธ์จากการแปลสภาพพื้นที่ป่า เพื่อสำรวจพื้นที่ป่าอุดมสมบูรณ์และป่าเสื่อมโทรม

- นอกจากนี้ยังใช้สำหรับ ติดตามพื้นที่ไฟป่าและความเสียหายจากไฟป่า

- ประเมินพื้นที่ที่เหมาะสมสำหรับปลูกป่าทดแทนบริเวณที่ถูกบุกรุก หรือโดนไฟป่า

ธรณีวิทยา

- การใช้ภาพถ่ายจากดาวเทียมแปลสภาพพื้นที่เพื่อจัดทำแผนที่ธรณีวิทยาและโครงสร้างทางธรณีซึ่งเป็นข้อมูลที่ต้องใช้เวลาและงบประมาณในการสำรวจ และนำมาสนับสนุนในการพัฒนาประเทศ เช่นเพื่อการประเมินหาแหล่งแร่แหล่งเชื้อเพลิงธรรมชาติ แหล่งน้ำบาดาล การสร้างเขื่อน เป็นต้น

- การใช้รีโมทเซนซิงมาสนับสนุนการจัดทำแผนที่ภูมิประเทศ

การวางผังเมือง

- ใช้รีโมทเซนซิง ภาพถ่ายจากดาวเทียมรายละเอียดสูง เพื่อใช้ติดตามการขยายตัวของเมือง

- ภาพถ่ายจากดาวเทียมช่วยให้ติดตาม การเปลี่ยนแปลงลักษณะ/รูปแบบ/ประเภทการใช้ที่ดิน

- ใช้ภาพถ่ายรายละเอียดสูง ติดตามระบบสาธารณูปโภค เช่น ระบบคมนาคมขนส่งทางบกทางน้ำ BTS ไฟฟ้า เป็นต้น

- ผลลัพธ์จากการแปลภาพถ่ายจากดาวเทียมนำมาใช้ ในระบบสารสนเทศภูมิศาสตร์วิเคราะห์ การพัฒนาสาธารณูปการเช่น การจัดสร้าง/ปรับปรุง สถานศึกษา โรงพยาบาล สถานีตำรวจ ดับเพลิง ไปรษณีย์ห้องสมุด สนามเด็กเล่น สวนสาธารณะ เป็นต้น

อุตุนิยมวิทยา/อุบัติภัย

ผลลัพธ์ที่ได้จากการแปลพื้นที่ได้รับผลกระทบ เพื่อการวางแผนช่วยเหลือและฟื้นฟู

รีโมทเซนซิง จึงได้นำมาใช้ประโยชน์ต่อการพัฒนาประเทศเป็นอย่างยิ่ง อย่างที่ได้เห็นตัวอย่างข้างต้นมาแล้วนี้


อ้างอิงแหล่งที่มาของข้อมูล/ภาพ

//www.gis2me.com/th/?p=739

คลื่นแม่เหล็กไฟฟ้าเป็นพลังงานรูปหนึ่งที่ส่งผ่านจากดวงอาทิตย์โดยการแผ่รังสี พลังงานแม่เหล็กไฟฟ้า ประกอบไปด้วย สนามแม่เหล็กและสนามไฟฟ้า โดยที่ทิศทางของสนามไฟฟ้าและทิศทางของสนามแม่เหล็ก มีการเคลื่อนที่ของคลื่นตั้งฉากซึ่งกันและกัน (แบบฮาร์โมนิค (Hamonic) คือ มีช่วงซ้ำและจังหวะเท่ากันในเวลาหนึ่งและมีความเร็วเท่าแสง) ซึ่งมีความสัมพันธ์กันดังนี้

คลื่นแม่เหล็กไฟฟ้าประกอบไปด้วยคลื่นที่มีความยาวช่วงคลื่นในหลากหลายช่วงคลื่น ตั้งแต่สั้นที่สุดไปจนถึงยาวที่สุด ซึ่งในแต่ละช่วงคลื่นจะมีคุณสมบัติเฉพาะตัว ความยาวคลื่นและความถี่คลื่นมีความสัมพันธ์กันแบบผกผัน กล่าวคือ ถ้าความยาวคลื่นมาก ความถี่จะน้อย หรือความยาวคลื่นน้อย ความถี่จะมาก โดยทั่วไป หน่วยวัดความยาวคลื่นที่ใช้ในงานรีโมทเซนซิง มักใช้เป็น ไมโครเมตร


ตาราง แสดงประเภทของคลื่นแม่เหล็กไฟฟ้า

ประเภทคลื่นแม่เหล็กไฟฟ้า

ความยาวช่วงคลื่น

ความถี่

คุณสมบัติ

1. รังสีแกมมา (gamma ray)

< 0.03 nm.

> 3,000 THz

ถูกดูดกลืนทั้งหมดโดยชั้นบรรยากาศชั้นบน จึงไม่ได้นำมาใช้ประโยชน์ในการสำรวจจากระยะไกล

2. รังสีเอกซ์ (x-ray)

0.03-3.0 nm.

> 3,000 THz

ถูกดูดกลืนทั้งหมดโดยชั้นบรรยากาศชั้นบนเช่นกัน จึงไม่ได้นำมาใช้ประโยชน์ในการสำรวจจากระยะไกล

3. รังสีอัลตราไวโอเลต (ultraviolet)

0.03-0.4 mm

750-3,000 THz

ช่วงคลื่นสั้นกว่า 0.3 mm ถูกดูดซึมทั้งหมดโดยโอโซน (O3) ในบรรยากาศชั้นบน

4. คลื่นอัลตราไวโอเลตที่ใช้ในการถ่ายภาพ
(photographic ultraviolet band)

0.03-0.4 mm

750-3,000 THz

ช่วงคลื่นนี้สามารถผ่านชั้นบรรยากาศได้ สามารถถ่ายภาพด้วยฟิล์มถ่ายรูป แต่มีการกระจายในชั้นบรรยากาศเป็นอุปสรรค

5. คลื่นตามองเห็น (visible)

0.4-0.7 mm

430-750 THz

เป็นช่วงคลื่นที่บันทึกด้วยฟิล์มถ่ายภาพและอุปกรณ์บันทึกภาพได้ดี โดยเป็นช่วงคลื่นที่ดวงอาทิตย์มีการสะท้อนพลังงานสูงสุด (reflected energy peak ที่ 0.5 mm) ช่วงคลื่นนี้แบ่งออกได้เป็น 3 กลุ่มที่ตอบสนองต่อสายตามนุษย์ คือ

ประเภทคลื่นแม่เหล็กไฟฟ้า

ความยาวช่วงคลื่น

ความถี่

คุณสมบัติ

0.4-0.5 mm. ช่วงคลื่นสีน้ำเงิน
0.5-0.6 mm. ช่วงคลื่นสีเขียว
0.6-0.7 mm. ช่วงคลื่นสีแดง
ซึ่งเป็นแม่สีแสงที่ก่อให้เกิดสีต่างๆ ที่เรามองเห็นในธรรมชาติ

6. คลื่นอินฟราเรด (infrared)
แบ่งออกเป็นช่วงคลื่นย่อย ดังนี้

ช่วงคลื่นระหว่าง 0.7-0.9 mm สามารถถ่ายภาพด้วยฟิล์มพิเศษ เรียกว่า photographic infrared film และเป็นช่วงที่โลกสะท้อนพลังงานสูงสุดที่ 9.7 mm

6.1 อินฟราเรดใกล้ (near infrared)

0.7-1.3 mm

230-430 THz

มีประโยชน์ต่อการศึกษาด้านพืชพรรณ การแยกแยะดินกับน้ำ

6.2 อินฟราเรดคลื่นสั้น
(short wave infrared)

1.3-3.0 mm

100-230 THz

มีประโยชน์ต่อการศึกษาด้านการใช้ที่ดินแร่ธาตุ

6.3 อินฟราเรดคลื่นกลาง
(middle wave infrared)

3.0-8.0 mm

38-100 THz

มีประโยชน์ด้านการแยกแยะแร่ธาตุวัตถุสะท้อนแสงสูง

6.4 อินฟราเรดความร้อน
(thermal infrared)

8.0-14.0 mm

22-38 THz

ใช้ศึกษาโรคพืชเนื่องจากความร้อน ความแตกต่างของความร้อนในพื้นที่ศึกษา ความแตกต่างของความชื้นของดิน

6.5 อินฟราเรดไกล (far infrared)

14.0 mm – 1 mm.

0.3-22 THz

ไม่ปรากฏการประยุกต์ใช้เพราะคลื่นนี้จะถูกชั้นบรรยากาศดูดกลืนจนเกือบทั้งหมด

7. คลื่นไมโครเวฟ (microwave)
แบ่งตามขนาดความยาวคลื่นได้
3 กลุ่มย่อย

0.1-30.0 cm.

เป็นช่วงคลื่นยาวที่สามารถทะลุผ่านหมอก เมฆ และฝนได้ สามารถบันทึกข้อมูลได้ทั้งระบบพาสซีฟและแอคทีฟ

7.1 ช่วงคลื่นขนาดมิลลิเมตร

1.0-10.0 mm.

30-300 GHz

7.2 ช่วงคลื่นขนาดเซนติเมตร

1.0-10.0 mm.

3-30 GHz

7.3 ช่วงคลื่นขนาดเดซิเมตร

0.1-1.0 dm.

0.3-3 GHz

8. คลื่นเรดาร์ (radar)
มีแบ่งย่อยเป็นช่วงคลื่นที่สำคัญ ดังนี้

0.1-30.0 cm.

30-300 MHz

เป็นระบบแอคทีฟ ที่สามารถทะลุผ่านหมอก เมฆ และฝนได้

8.1 Ka band

10 mm.

8.2 X band

30 mm.

8.3 L band

25 cm.

9. คลื่นวิทยุ (radio)

1 m. – 100 km.

3 KHz–300 MHz

เป็นช่วงคลื่นที่ยาวที่สุด บางครั้งมีเรดาร์อยู่ในช่วงนี้ด้วย


อ้างอิงแหล่งที่มาของข้อมูล/ภาพ

//www.gis2me.com/th/?p=784

ศุทธินี ดนตรี, ความรู้พื้นฐานด้านการสำรวจจากระยะไกล (Remote Sensing), 2544, หน้า 3-7 ถึง 3-8


แสงสว่างเป็นรูปหนึ่งของพลังงานแม่เหล็กไฟฟ้า ซึ่งแผ่รังสีเป็นไปตามทฤษฎีของคลื่น ส่วนพลังงานของคลื่นแม่เหล็กไฟฟ้านั้น สามารถอธิบายได้ด้วยทฤษฎีอนุภาค (Particle Theory) กล่าวคือ การแผ่รังสีของคลื่นแม่เหล็กไฟฟ้าประกอบด้วยหน่วยอิสระที่เรียกว่า โฟตอน (Photon) หรือควอนต้า (Quanta) พลังงานแต่ละควอนต้าเป็นสัดส่วนโดยตรงกับความถี่ของคลื่น

พลังงานเป็นสัดส่วนผกผันกับความยาวคลื่น คือ ความยาวคลื่นมากให้พลังงานต่ำ ซึ่งมีความสำคัญในการสำรวจข้อมูลระยะไกล เช่น ไมโครเวฟจากพื้นโลก จะยากต่อการบันทึกมากกว่าพลังงานในช่วงคลื่นสั้นกว่า ฉะนั้น การบันทึกพลังงานช่วงคลื่นยาว ต้องบันทึกพลังงานในบริเวณกว้างและใช้เวลานานพอสมควร(273 องศาเซลเซียส C) สามารถเปล่งหรือแผ่พลังงานแม่เหล็กไฟฟ้าออกมาได้อย่างต่อเนื่อง ดังนั้น วัตถุพื้นผิวโลกถือว่าเป็นแหล่งพลังงานที่ขนาดและส่วนประกอบของช่วงคลื่นแตกต่างกันไป พลังงานแผ่ออกมามากน้อยขึ้นอยู่กับอุณหภูมิของพื้นผิววัตถุ โดยสามารถคำนวณได้จากกฎของ Stefan-Boltzmann ดังนี้-ดวงอาทิตย์เป็นแหล่งกำเนิดพลังงานแม่เหล็กไฟฟ้าที่สำคัญที่สุดของการสำรวจข้อมูลระยะไกล อย่างไรก็ตาม สสารทุกชนิดที่มีอุณหภูมิชนิดที่มีอุณหภูมิสูงกว่าองศาสัมบูรณ์

พลังงานทั้งหมดที่แผ่จากวัตถุจะเป็นสัดส่วนโดยตรงกับอุณหภูมิสมบูรณ์กำลัง 4 ดังนั้น พลังงานที่แผ่ออกมาจะเพิ่มขึ้นอย่างรวดเร็วเมื่ออุณหภูมิเพิ่มขึ้น โดยความจริงกฎนี้จะใช้กับเทหวัตถุสีดำ (Black Body) ซึ่งหมายถึง วัตถุหรือมวล ๆ หนึ่งที่สามารถดูดกลืนพลังงานทั้งหมดที่กระทบและจะแผ่พลังงานในปริมาณที่มากที่สุดที่ทุก ๆ อุณหภูมิเทหวัตถุสีดำจึงเป็นสิ่งสมมติฐานขึ้น เพราะไม่มีสสารใด ๆ ในโลกที่มีคุณสมบัติดังกล่าว แต่มีสภาพใกล้เคียงเท่านั้น

พลังงานที่แผ่ออกมาจะแปรผันกับอุณหภูมิของวัตถุและความยาวช่วงคลื่น ซึ่งสามารถคำนวณหาพลังงานต่อหนึ่งหน่วยพื้นที่สำหรับความยาวคลื่นที่กำหนดจากกฎของ Planck

นอกจากนี้ เมื่อทราบอุณหภูมิสามารถคำนวณหาความยาวคลื่นที่ให้พลังงานสูงสุด จากกฎการแทนที่ของ Wien (Wien’s Displacement Law)

จากสมการสรุปได้ว่า อุณหภูมิของผิวพื้นโลกประมาณ 300 องศาเคลวิน °K แผ่พลังงานสูงสุดที่ความยาวคลื่นประมาณ 9.7 ไมโครเมตร การแผ่รังสีนี้มีความสัมพันธ์กับความร้อนผิวโลก จึงมักเรียกรังสีที่แผ่ออกมานี้ว่า อินฟราเรดความร้อน ซึ่งไม่สามารถมองเห็นและถ่ายภาพได้ด้วยกล้องธรรมดา ต้องใช้

Toplist

โพสต์ล่าสุด

แท็ก

แปลภาษาไทย ไทยแปลอังกฤษ แปลภาษาอังกฤษเป็นไทย pantip โปรแกรม-แปล-ภาษา-อังกฤษ พร้อม-คำ-อ่าน อาจารย์ ตจต ศัพท์ทหาร ภาษาอังกฤษ pdf lmyour แปลภาษา ชขภใ ห่อหมกฮวกไปฝากป้าmv กรมพัฒนาฝีมือแรงงาน อบรมฟรี 2566 ขขขขบบบยข ่ส ศัพท์ทางทหาร military words หนังสือราชการ ตัวอย่าง หยน แปลบาลีเป็นไทย ไทยแปลอังกฤษ ประโยค การไฟฟ้านครหลวง การไฟฟ้าส่วนภูมิภาค ข้อสอบโอเน็ต ม.3 ออกเรื่องอะไรบ้าง พจนานุกรมศัพท์ทหาร เมอร์ซี่ อาร์สยาม ล่าสุด แปลภาษามลายู ยาวี Bahasa Thailand กรมพัฒนาฝีมือแรงงาน อบรมออนไลน์ การ์ดจอมือสอง ข้อสอบคณิตศาสตร์ พร้อมเฉลย คะแนน o-net โรงเรียน ค้นหา ประวัติ นามสกุล บทที่ 1 ที่มาและความสําคัญของปัญหา ร. ต จ แบบฝึกหัดเคมี ม.5 พร้อมเฉลย แปลภาษาอาหรับ-ไทย ใบรับรอง กรมพัฒนาฝีมือแรงงาน PEA Life login Terjemahan บบบย มือปราบผีพันธุ์ซาตาน ภาค2 สรุปการบริหารทรัพยากรมนุษย์ pdf สอบโอเน็ต ม.3 จําเป็นไหม เช็คยอดค่าไฟฟ้า แจ้งไฟฟ้าดับ แปลภาษา มาเลเซีย ไทย แผนที่ทวีปอเมริกาเหนือ ่้แปลภาษา Google Translate กระบวนการบริหารทรัพยากรมนุษย์ 8 ขั้นตอน ก่อนจะนิ่งก็ต้องกลิ้งมาก่อน เนื้อเพลง ข้อสอบโอเน็ตม.3 มีกี่ข้อ คะแนนโอเน็ต 65 ตม กรุงเทพ มีที่ไหนบ้าง