หลักการ ทํา งานของเครื่องรับวิทยุ AM

ในวงจร Mixer จะทำการผสมสัญญาณRF กับสัญญาณจาก Local Oscillator ซึ่งความถี่ทั้งสองนี้จะห่างกันอยู่ เท่ากับ 455 KHz พอดี (ห่างกันเท่ากับความถี่ IF) สมมุติว่าเราต้องการรับสัญญาณวิทยุ AM ที่ความถี่ 1000 KHz วงจรขยาย RF ก็ต้องจูนและขยายความถี่ 1000 KHz เป็นหลัก และยอมให้ความถี่ใกล้เคียงบริเวณ 1000 KHz เข้ามาได้เล็กน้อย การจูนความถี่นอกจากจะจูนภาคขยาย RF แล้วยังจะจูนวงจร Local Oscillator ด้วย (วิทยุ AM แบบใช้มือจูน) ความถี่ของ Local Oscillator จะเท่ากับ 1000 KHz +455 KHz = 1455 KHz พอดี
เมื่อสัญญาณทั้ง RF และจาก Local Oscillator ป้อนเข้ามาที่วงจร Mixer ซึ่งเป็นวงจรที่ทำงานแบบ นอนลิเนียร์ สัญญาณที่ออกมาจะมี่ทั้งสัญญาณผลบวกและผลต่าง เมื่อป้อนให้กับวงจร IF ซึ่งจูนรับความถี่ 455 KHz ดังนั้นสัญญาณผลรวมจะถูกตัดทิ้งไป คงไว้แต่สัญญาณของความถี่ผลต่าง (1455 KHZ - 1000 KHz = 455 KHz)วงจรขยาย IF ก็คือวงจรขยาย RF ที่จูนความถี่เอาไว้เฉพาะ ที่ความถี่ 455 KHz วงจรขยาย IF อาจจะมีด้วยกันหลายภาค เพื่อให้มีอัตราการขยายสัญญาณที่รับได้สูง ๆ และ การเลือกรับสัญญาณที่ดี เนื่อจาหวงจรนี้ขยายความถี่คงที่จึงทำให้ง่ายต่อการออกแบบ สัญญาณที่ขยายแล้วจะเข้าสู่กระบวนการ Detector เพื่อแยกสัญญาณเสียงออกมา



การทำงานของบล็อกไดอะแกรมเครื่องรับวิทยุFM

หลักการ ทํา งานของเครื่องรับวิทยุ AM




1.สายอากาศ (Antenna) จะทำหน้าที่รับสัญญาณคลื่นวิทยุที่ส่งจากสถานีต่างๆ เข้ามาทั้งหมดโดยไม่จำกัดว่าเป็นสถานีใด ถ้าสถานีนั้นๆ ส่งสัญญาณมาถึง สายอากาศจะส่งสัญญาณต่างๆไปยังภาค RF โดยส่วนใหญ่สายอากาศของเครื่องรับวิทยุ FM จะเป็นแบบไดโพล (Di-Pole) ซึ่งเป็นสายอากาศแบบสองขั้ว จะช่วยทำให้การรับสัญญาณดียิ่งขึ้น
2.ภาคขยาย RF (Radio Frequency Amplifier) จะทำงานเหมือนกับเครื่องรับวิทยุ AM คือจะทำหน้าที่รับสัญญาณวิทยุในย่าน FM 88 MHz – 108 MHz เข้ามาและเลือกรับสัญญาณ FM เพียงสถานีเดียวโดยวงจรจูนด์ RF และขยายสัญญาณ RF นั้นให้แรงขึ้น เพื่อให้มีกำลังสูง เหมาะที่จะส่งไปบีท (Beat) หรือผสมในภาคมิกเซอร์ (Mixer) โดยข้อแตกต่างสำคัญของภาคขยาย RF ของเครื่งรับ AM และ FM คือ วิทยุFM ใช้ความถี่สูงกว่า AM ดังนั้นการเลือกอุปกรณ์มาใช้ในวงจรขยายจะต้องหาอุปกรณ์ที่ให้การตอบสนองความถี่ในย่าน FM ได้ และต้องขยายช่องความถี่ที่กว้างของ FM ได้
3.ภาคมิคเซอร์ (Mixer) จะทำงานโดยจะรับสัญญาณเข้ามาสองสัญญาณ ได้แก่สัญญาณ RF จากภาคขยาย RF และสัญญาณ OSC. จากภาคโลคอลออสซิลเลเตอร์ เพื่อผสมสัญญาณ (MIX.) ให้ได้สัญญาณออกเอาท์พุตตามต้องการ สัญญาณที่ออกจากภาคมิกเซอร์มีทั้งหมด 4 ความถี่ คือ

a)     ความถี่ RF ที่รับเข้ามาจากวงจรจูน RF (RF)

b)     ความถี่ OSC. ที่ส่งมาจากภาคโลคอล ออสซิลเลเตอร์ (OSC.)

c)     ความถี่ผลต่างระหว่าง OSC. กับ RF. จะได้เป็นคลื่นขนาดกลางหรือที่เรียกว่า IF (Intermediate Frequency) ได้ความถี่ 10.7 MHz

d)     ความถี่ผลบวกระหว่าง OSC. กับ RF

ความถี่ที่วงจรจูนด์ IF ให้ผ่านมีความถี่เดียว คือความถี่ IF เท่ากับ 10.7 MHz ไม่ว่าภาคขยาย RF จะรับความถี่เข้ามาเท่าไรก็ตาม และภาค OSC. จะผลิตความถี่ขึ้นมาเท่าไรก็ตาม เมื่อเข้าผสมกันที่ภาคมิกเซอร์แล้วจะได้ความถี่ IF เท่ากับ 10.7 MHz ออกเอาท์พุตเสมอ
4.ภาคโลคอล ออสซิลเลเตอร์ (Local Oscillator) ทำงานเหมือนกับเครื่องรับวิทยุ AM คือ ผลิตความถี่ที่มีความแรงคงที่ขึ้นมา ความถี่ที่ผลิตขึ้นจะสูงกว่าความถี่ที่วงจรจูนด์ RF รับเข้ามาเท่ากับความถี่ IF คือ 10.7 MHz. เช่น วงจรจูนด์ RF รับความถี่เข้ามา 100 MHz. ความถี่ OSC. จะผลิตขึ้นมา 100 MHz. + 10.7 MHz. = 110.7 MHz.
5.ภาคขยาย IF (Intermediate Frequency Amplifier) จะทำหน้าที่เหมือนเครื่องรับวิทยุ AM และยังสามารถขยายความถี่ IF ทั้งของ AM และ FM ได้ ในเครื่องรับวิทยุบางรุ่นที่มีทั้ง AM และ FM ในเครื่องเดียวกัน อาจใช้ภาคขยาย IF ร่วมกันทั้งวิทยุ AM และวิทยุ FM คือขยายความถี่ IF ให้มีระดับความแรงมากขึ้นแบบไม่ผิดเพี้ยน โดยภาคขยาย IF ของคลื่น FM นั้นขยายความถี่ได้ตลอดย่าน 10.7 MHz. นับว่ามีความถี่สูงกว่าเครื่องรับ AM ซึ่งโดยปกติเครื่องรับแบบ AM มีความถี่เพียง 455 kHz. เท่านั้น ส่วนที่แตกต่างกันระหว่างIF ของ AM และ FM คือ ในส่วนวงจรจูนด์ IF เพราะใช้ความถี่ไม่เท่ากัน ค่าความถี่เรโซแนนท์ต่างกัน การกำหนดค่า L, C มาใช้งานต่างกัน
6.ภาคดีเทคเตอร์ (Detector) ดีเทคเตอร์ของเครื่องรับ FM นั้นมีความแตกต่างกับเครื่องรับ AM ทั้งนี้เพราะวิธีผสมคลื่นของสถานีส่งทั้งสองแบบนี้ไม่เหมือนกัน โดยภาคดีเทคเตอร์ทำหน้าที่แยกสัญญาณเสียงออกจากความถี่ IF แต่จะแตกต่างกันในระบบการแยกเสียง เพราะในระบบ AM สัญญาณเสียงถูกผสมมาทางความสูงของคลื่นพาหะ สามารถแยกได้โดยใช้ไดโอดหรือทรานซิสเตอร์ร่วมกับ R, C ฟิลเตอร์ก็สามารถตัดความถี่ IF ออกเหลือเฉพาะสัญญาณเสียงได้ ส่วนในระบบวิทยุ FM สัญญาณเสียงจะผสมกับพาหะ โดยสัญญาณเสียงทำให้คลื่นพาหะเปลี่ยนความถี่สูงขึ้นหรือต่ำลง ส่วนความแรงคงที่ ไม่สามารถใช้วิธีการดีเทคเตอร์แบบ AM ได้ ต้องใช้วิธีพิเศษ เช่น ดิสคริมิเนเตอร์ (Discriminator), เรโชดีเทคเตอร์ (Ratio Detector), เฟส ล็อค ลูป ดีเทคเตอร์ (Phase Lock Loop Detector) เป็นต้น จะแตกต่างจากของ AM โดยสิ้นเชิง
7.ภาคขยายเสียง (Audio Frequency Amplifier) ใช้งานร่วมกับของเครื่องรับวิทยุ AM ได้ เพราะทำหน้าที่ขยายเสียงที่ส่งมาจากภาคดีเทคเตอร์ ให้มีระดับความแรงมากขึ้นแบบไม่ผิดเพี้ยนพอที่จะไปขับลำโพงให้เปล่งเสียงออกมา โดยในเครื่องรับวิทยุบางแบบอาจมีภาคขยายเสียงในตัว แต่บางแบบอาจจะไม่มีเครื่องขยายเสียงในตัว แต่จะมีอยู่ต่างหาก เครื่องรับวิทยุที่มีเครื่องขยายเสียงภายนอกเรียกว่า จูนเนอร์ (Tunner)
8.ภาคจ่ายกำลังไฟ (Power Supply) ทำหน้าที่จ่ายแรงดันไฟ DC เลี้ยงวงจรของเครื่องรับวิทยุ FM ซึ่งจะต้องใช้วงจรเรกกูเลเตอร์ (Regulator) ควบคุมแรงดันไฟ DC ให้คงที่เพื่อเลี้ยงวงจร ทำให้คุณภาพของเครื่องรับวิทยุ FM ดีขึ้น

การทำงานบล็อกไดอะแกรมของเครื่องส่งวิทยุ AM , FM

  หลักการทำงานของเครื่องส่งวิทยุ AM


            การทำงานของวิทยุเอเอ็ม เริ่มจากที่สถานีต้นทาง เมื่อเริ่มมีการออกอาอาศ สัญญาณเสียงต่างๆ ที่มีความถี่ต่ำมนุษย์สามารถได้ยินได้ในระยะใกล้นั้น จะถูกส่งไปเปลี่ยนรูปเป็นสัญญาณทางไฟฟ้าทางไมโครโฟน(หรืออุปกรณ์อื่น) คลื่นที่ถูกเปลี่ยนจะถูกนำไปที่ตัวเครื่องส่ง (Transmitter) ปรับกับคลื่นสัญญาณอีกตัวหนึ่ง ซึ่งมีความถี่สูงมาก เรียกว่าคลื่นนำพา โดยคลื่นนำพานี้จะมีความแตกต่างกันไปในแต่ละสถานีเช่น สถานี ก. มีคลื่นนำพาที่มีค่าความถี่หนึ่ง ส่วนสถานี ข. จะมีีคลื่นนำพาที่มีค่าความถี่อีกค่าอีกหนึ่ง ซึ่งต้องต่างจากสถานี ก. รวมถึงสถานีอื่นๆที่มีการตั้งอยู่ก่อนด้วย โดยคลื่นเสียงที่เข้ามาจะไปบังคับให้คลื่นนำพามีการเปลี่ยนแปลงแอมพลิจูดตามคลื่นเสียงแต่มีความถี่เท่าเดิม ซึ่งคลื่นตัวนี้จะถูกส่งออกไปในอากาศจากเสาส่ง เป็นอันเสร็จสิ้นกระบวนการส่งสัญญาณ

    หลักการทำงานของเครื่องส่งวิทยุ FM               


 หลักการทำงานคือ หลังจากที่ได้รับตัวสัญญาณเสียงจากไมโครโฟนหรือแหล่งเสียงอื่นๆแล้ว สัญญาณเสียงจะถูกเปลี่ยนรูปเป็นสัญญาณไฟฟ้า สัญญาณไฟฟ้านั้นจะถูกนำไปเข้าระบบ Amplifier เพื่อขยายกำลังของสัญญาณเสียงที่ได้ หลังจากขยายแล้ว ก็จะนำส่งต่อไปยังภาคของ Modulation โดยสัญญาณที่จะนำมา Modulation ด้วยนั้นคือสัญญาณจากตัว Oscillator ซึ่งจะผลิตความถี่ได้ในช่วง 88 - 108 MHz

ระบบสือสารดาวเทียมกับภาคพื้นโลก

                                                            ระบบสื่อสารระหว่างดาวเทียมกับภาพพื้นโลก
ดาวเทียมสื่อสาร
(communication satellite หรือเรียกสั้นๆ ว่า  comsat)    ป็นดาวเทียมที่มีจุดประสงค์เพื่อการสื่อสารและ โทรคมนาคม จะถูกส่งไปในช่วงของอวกาศเข้าสู่วงโคจรโดยมีความห่างจากพื้นโลกโดยประมาณ 35.786 กิโลเมตร
    ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน
ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจะส่งสัญญาณไปยังสถานีภาคพื้นดิน
เนื่องจากดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา ไม่มีการหยุด ดาวเทียมสื่อสารจึงถูกออกแบบมาเป็นอย่างดี ให้สามารถใช้งานในอวกาศได้ประมาณ 10 - 15 ปี โดยที่ดาวเทียมต้องสามารถโคจร และรักษาตำแหน่งให้อยู่ในตำแหน่งที่ถูกต้องได้ตลอดเวลา
 หน้าที่  รับสัญญาณจากสถานีภาคพื้นดินยังประเทศต้นทางแล้วส่งสัญญาณไปยังสถานีภาคพื้นดินของประเทศปลายทาง

สถานีภาคพื้นดิน
   สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า "Transponder"ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่อสารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
หน้าที่  สถานีภาคพื้นดินต้นทาง  รับสัญญาณจากโทรศัพท์มือถือต้นทางส่งไปยังดาวเทียม
หน้าที สถานีภาคพื้นดินปลายทาง รับสัญญาณจากดาวเทียมแล้วส่งไปที่โทรศัพท์มือถือปลายทาง

ดาวเทียมสื่อสารที่ส่งขึ้นไปครั้งแรกเมื่อปี 2508 โดยองค์การโทรคมนาคม ผู้ที่ริเริ่มแนวคิดการสื่อสารดาวเทียมคือ อาเธอร์ ซี คลาร์ก (Arthur C. Clarke) นักเขียนนวนิยายและสารคดีวิทยาศาสตร์ผู้มีชื่อเสียงปลายคริสต์ศตวรรษที่ 20 เขาสร้างจินตนาการการสื่อสารดาวเทียมให้เรารับรู้ตั้งแต่ปี ค.ศ. 1945 โดยเขียนบทความเรื่อง "Extra Terrestrial Relay"ในนิตยสาร Wireless World ฉบับเดือน ตุลาคม 1945 ซึ่งบทความนั้นได้กล่าวถึงการเชื่อมระบบสัญญาณวิทยุจากมุมโลกหนึ่งไปยังอีกมุมโลกหนึ่ง ให้สามารถติดต่อสื่อสารกันได้ตลอด 24 ชั่วโมง โดยใช้สถานีถ่ายทอดวิทยุที่ลอยอยู่ในอวกาศเหนือพื้นโลกขึ้นไปประมาณ35,786 กิโลเมตร จำนวน 3 สถานี

ในวันที่ 4 ตุลาคม ค.ศ. 1957 ข้อคิดในบทความของอาร์เธอร์ ซี คลาร์ก เริ่มเป็นจริงขึ้นมาเมื่อสหภาพโซเวียตได้ส่งดาวเทียม สปุตนิก ซึ่งเป็นดาวเทียมดวงแรกของโลกได้สำเร็จ ต่อมาเมื่อวันที่ 18 ธันวาคม ค.ศ. 1958 สหรัฐอเมริกาได้ส่งดาวเทียมเพื่อการสื่อสารดวงแรกที่ชื่อว่าสกอร์ (Score) ขึ้นสู่อวกาศ และได้บันทึกเสียงสัญญาณที่เป็นคำกล่าวอวยพรของประธานาธิบดีโอเซนฮาร์ว เนื่องเทศกาลคริสต์มาสจากสถานีภาคพื้นดินแล้วถ่ายทอดสัญญาณจากดาวเทียมลงมาสู่ชาวโลก นับเป็นการส่งวิทยุกระจายเสียงจากดาวเทียมภาคพื้นโลกได้เป็นครั้งแรก

วันที่ 20 สิงหาคม ค.ศ. 1964 ประเทศสมาชิกสหภาพโทรคมนาคมระหว่างประเทศ (ITU) จำนวน 11 ประเทศ ร่วมกันจัดตั้งองค์การโทรคมนาคมทางดาวเทียมระหว่างประเทศ หรือเรียกว่า “อินเทลแซท”(INTELSATINTERNATIONAL TELECOMMUNICATIONS SATELLITE ORGANIZATION) ขึ้นที่กรุงวอชิงตันดี.ซี. สหรัฐอเมริกา โดยให้ประเทศสมาชิกเข้าถือหุ้นดำเนินการใช้ดาวเทียมเพื่อกิจการโทรคมนาคมพานิชย์แห่งโลก INTELSAT ตั้งคณะกรรมการINTERIM COMMUNICATIONS SATELLITE COMMITTEE (ICSC)จัดการในธุรกิจต่าง ๆ ตามนโยบายของICSC เช่นการจัดสร้างดาวเทียมการปล่อยดาวเทียมการกำหนดมาตราฐานสถานีภาคพื้นดิน การกำหนดค่าเช่าใช้ช่องสัญญาณดาวเทียม เป็นต้น

วันที่ 10 ตุลาคม ค.ศ. 1964 ได้มีการถ่ายทอดโทรทัศน์พิธีเปิดงานกีฬาโอลิมปิกครั้งที่ 18 จากกรุงโตเกียวผ่านดาวเทียม “SYNCOM III” ไปสหรัฐอเมริกานับได้ว่าเป็นการถ่ายทอดสัญญาณโทรทัศน์ผ่านดาวเทียมครั้งแรกของโลก

วันที่ 6 เมษายน ค.ศ. 1965COMSAT ส่งดาวเทียม “TELSAT 1”หรือในชื่อว่า EARLY BIRD ส่งขึ้นเหนือมหาสมุทรแอตแลนติก ถือว่าเป็นดาวเทียมเพื่อการสื่อสาร เพื่อการพานิชย์ดวงแรกของโลก ในระยะหลังมีหลายประเทศที่มีดาวเทียมเป็นของตนเอง (DOMSAT) เพื่อใช้ในการสื่อสารภายในประเทศ

·         PALAPA ของอินโดนีเซีย

·         SAKURA ของญี่ปุ่น

·         COMSTAR ของอเมริกา

·         THAICOM ของประเทศไทย

ดาวเทียมสื่อสาร

                  ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน นับตั้งแต่ NASA ส่งดาวเทียมสื่อสารเข้าสู่วงโคจรไป จนปัจจุบันมีบริษัทเอกชนจำนวนมากที่เข้ามาบุกเบิกธุรกิจ และทำกำไรมหาศาล จากประโยชน์ต่างๆ ที่ได้จากดาวเทียม
       ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจุส่งสัญญาณไปยังสถานีภาคพื้นดิน สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า "Transponder" ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่สารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
            วิธีการทำงาน
       เนื่องจากดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา ไม่มีการหยุด ดาวเทียมสื่อสารจึงถูกออกแบบมาเป็นอย่างดี ให้สามารถใช้งานในอวกาศได้ประมาณ 10 - 15 ปี โดยที่ดาวเทียมต้องสามารถโคจร และรักษาตำแหน่งให้อยู่ในตำแหน่งที่ถูกต้องได้ตลอดเวลา ดาวเทียมสื่อสารทำงานโดยอาศัยหลักการส่งผ่านสัญญาณถึงกันระหว่างสถานีภาคพื้นดินและ ดาวเทียม ซึ่งมีการทำงาน ดังนี้
       1. ภาคอวกาศ (Space Segment)ประกอบด้วยตัวดาวเทียม ซึ่งมีส่วนประกอบที่สำคัญ ดังนี้
           1.1 ระบบขับเคลื่อนตัวดาวเทียม (Propulsion Subsystem) โดยจะใช้ก๊าซ หรือพลังงานความร้อนจากไฟฟ้าเพื่อให้เกิดแรงผลักดัน หรือแรงกระตุ้นเพื่อให้เกิดการหมุนและรักษาตำแหน่งของดาวเทียม
           1.2 ระบบควบคุมตัวดาวเทียม (Spacecraft Control Subsystem) เพื่อรักษาสมดุลในการทรงตัวของดาวเทียมเพื่อไม่ให้ดาวเทียมหลุดลอย ไปในอวกาศหรือถูกแรงดึงดูดของโลกดึงให้ตกลงมาบนพื้นโลก
           1.3 ระบบอุปกรณ์สื่อสาร (Electronic Communication Subsystem) เนื่องจากดาวเทียมสื่อสารส่วนใหญ่จะมีทรานสปอนเดอร์ (Transponder) หรือช่องสัญญาณดาวเทียมทำหน้าที่รับสัญญาณจากสถานีส่งภาคพื้นดินแล้วแปลงความถี่ของสัญญาณดังกล่าวให้เป็นความถี่ขาลง(Downlink Frequency) พร้อมทั้งขยายสัญญาณดังกล่าวเพื่อให้สามารถส่งกลับสู่สถานีภาคพื้นดินได้
           1.4 ระบบพลังงานไฟฟ้า (Electrical Power Subsystem)ดาวเทียมสื่อสารทุกดวงจะมีแผงเซลล์ไฟฟ้าพลังงานแสงอาทิตย์ ทำหน้าที่เปลี่ยนพลังงานแสงอาทิตย์ให้เป็นพลังงานไฟฟ้าสำหรับอุปกรณ์สื่อสาร และภาคควบคุมต่างๆ บนดาวเทียม นอกจากนี้ยังทำหน้าที่เก็บพลังงานไฟฟ้าไว้ในตัวเก็บประจุไฟฟ้า (Battery) เพื่อสำรองไว้ใช้งานอีกด้วย
           1.5 ระบบสายอากาศ (Antenna Subsystem) จานสายอากาศบนตัวดาวเทียม จะทำหน้าที่รับสัญญาณจากสถานีภาคพื้นดิน โดยใช้จานสายอากาศส่วนใหญ่เป็นแบบ Paraboloid มีการส่ง สัญญาณเป็นชนิดที่มีการกำหนดทิศทาง (Directional Beam)
            1.6 ระบบติดตามและควบคุม (TT&C Telemetry Tracking and Command Subsystem) ใช้ติดตามการทำงานของดาวเทียมและควบคุมรักษาตำแหน่งของดาวเทียมให้โคจรอยู่ในตำแหน่งที่ถูกต้อง เสมอ จากสถานีควบคุมภาคพื้นดิน (Master Earth Station)
             2. ภาคพื้นดิน (Ground Segment) : สถานีดาวเทียมภาคพื้นดิน (Satellite Earth Station) ประกอบด้วย 4 ส่วนหลัก ๆ คือ
          2.1 อุปกรณ์จานสายอากาศ(Antenna Subsystem) ต้องมีความสามารถในการรวมพลังงานไปในทิศทางที่ตรงกับดาวเทียม
และต้องมีความสามารถในการรับสัญญาณจากดาวเทียมได้
          2.2 ภาคอุปกรณ์สัญญาณวิทยุ (Radio Frequency Subsystem)ทำหน้าที่รับส่งสัญญาณความถี่วิทยุที่ใช้งานเป็นหลัก
          2.3 ภาคอุปกรณ์แปลงสัญญาณวิทยุ (RF/IF Subsystem) ประกอบด้วย
                   1) Up Converter Partทำหน้าที่แปลงย่านความถี่ IF ซึ่งรับจากSatellite Modem ให้เป็นความถี่ย่านที่ใช้งานกับระบบดาวเทียมต่าง ๆ จากนั้นส่งสัญญาณที่แปลงความถี่แล้วไปให้ภาคขยายสัญญาณย่านความถี่สูง เพื่อส่งสัญญาณไปยังดาวเทียม
                  2) Down Converter Part ทำหน้าที่แปลงความถี่ของสัญญาณ ที่ได้รับจากดาวเทียมในย่านความถี่ของดาวเทียมไปเป็นความถี่ย่าน
IF เพื่อส่งต่อให้แก่ภาค Demodulatorของ Satellite Modem
          2.4 อุปกรณ์ Modem (Modulator / Demodutator) ทำหน้าที่แปลงข้อมูลที่ต้องการส่งผ่านระบบสื่อสารผ่านดาวเทียมให้อยู่ในรูปของ สัญญาณคลื่นวิทยุที่มีข้อมูลผสมอยู่ให้ได้เป็นข้อมูลที่สามารถนำไปใช้งานต่อไป

                                                            ระบบสื่อสารระหว่างดาวเทียมกับภาพพื้นโลก
ดาวเทียมสื่อสาร
(communication satellite หรือเรียกสั้นๆ ว่า  comsat)    ป็นดาวเทียมที่มีจุดประสงค์เพื่อการสื่อสารและ โทรคมนาคม จะถูกส่งไปในช่วงของอวกาศเข้าสู่วงโคจรโดยมีความห่างจากพื้นโลกโดยประมาณ 35.786 กิโลเมตร
    ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน
ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจะส่งสัญญาณไปยังสถานีภาคพื้นดิน
เนื่องจากดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา ไม่มีการหยุด ดาวเทียมสื่อสารจึงถูกออกแบบมาเป็นอย่างดี ให้สามารถใช้งานในอวกาศได้ประมาณ 10 - 15 ปี โดยที่ดาวเทียมต้องสามารถโคจร และรักษาตำแหน่งให้อยู่ในตำแหน่งที่ถูกต้องได้ตลอดเวลา
 หน้าที่  รับสัญญาณจากสถานีภาคพื้นดินยังประเทศต้นทางแล้วส่งสัญญาณไปยังสถานีภาคพื้นดินของประเทศปลายทาง

สถานีภาคพื้นดิน
   สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า "Transponder"ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่อสารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
หน้าที่  สถานีภาคพื้นดินต้นทาง  รับสัญญาณจากโทรศัพท์มือถือต้นทางส่งไปยังดาวเทียม
หน้าที สถานีภาคพื้นดินปลายทาง รับสัญญาณจากดาวเทียมแล้วส่งไปที่โทรศัพท์มือถือปลายทาง

ดาวเทียมสื่อสารที่ส่งขึ้นไปครั้งแรกเมื่อปี 2508 โดยองค์การโทรคมนาคม ผู้ที่ริเริ่มแนวคิดการสื่อสารดาวเทียมคือ อาเธอร์ ซี คลาร์ก (Arthur C. Clarke) นักเขียนนวนิยายและสารคดีวิทยาศาสตร์ผู้มีชื่อเสียงปลายคริสต์ศตวรรษที่ 20 เขาสร้างจินตนาการการสื่อสารดาวเทียมให้เรารับรู้ตั้งแต่ปี ค.ศ. 1945 โดยเขียนบทความเรื่อง "Extra Terrestrial Relay"ในนิตยสาร Wireless World ฉบับเดือน ตุลาคม 1945 ซึ่งบทความนั้นได้กล่าวถึงการเชื่อมระบบสัญญาณวิทยุจากมุมโลกหนึ่งไปยังอีกมุมโลกหนึ่ง ให้สามารถติดต่อสื่อสารกันได้ตลอด 24 ชั่วโมง โดยใช้สถานีถ่ายทอดวิทยุที่ลอยอยู่ในอวกาศเหนือพื้นโลกขึ้นไปประมาณ35,786 กิโลเมตร จำนวน 3 สถานี

ในวันที่ 4 ตุลาคม ค.ศ. 1957 ข้อคิดในบทความของอาร์เธอร์ ซี คลาร์ก เริ่มเป็นจริงขึ้นมาเมื่อสหภาพโซเวียตได้ส่งดาวเทียม สปุตนิก ซึ่งเป็นดาวเทียมดวงแรกของโลกได้สำเร็จ ต่อมาเมื่อวันที่ 18 ธันวาคม ค.ศ. 1958 สหรัฐอเมริกาได้ส่งดาวเทียมเพื่อการสื่อสารดวงแรกที่ชื่อว่าสกอร์ (Score) ขึ้นสู่อวกาศ และได้บันทึกเสียงสัญญาณที่เป็นคำกล่าวอวยพรของประธานาธิบดีโอเซนฮาร์ว เนื่องเทศกาลคริสต์มาสจากสถานีภาคพื้นดินแล้วถ่ายทอดสัญญาณจากดาวเทียมลงมาสู่ชาวโลก นับเป็นการส่งวิทยุกระจายเสียงจากดาวเทียมภาคพื้นโลกได้เป็นครั้งแรก

วันที่ 20 สิงหาคม ค.ศ. 1964 ประเทศสมาชิกสหภาพโทรคมนาคมระหว่างประเทศ (ITU) จำนวน 11 ประเทศ ร่วมกันจัดตั้งองค์การโทรคมนาคมทางดาวเทียมระหว่างประเทศ หรือเรียกว่า “อินเทลแซท”(INTELSATINTERNATIONAL TELECOMMUNICATIONS SATELLITE ORGANIZATION) ขึ้นที่กรุงวอชิงตันดี.ซี. สหรัฐอเมริกา โดยให้ประเทศสมาชิกเข้าถือหุ้นดำเนินการใช้ดาวเทียมเพื่อกิจการโทรคมนาคมพานิชย์แห่งโลก INTELSAT ตั้งคณะกรรมการINTERIM COMMUNICATIONS SATELLITE COMMITTEE (ICSC)จัดการในธุรกิจต่าง ๆ ตามนโยบายของICSC เช่นการจัดสร้างดาวเทียมการปล่อยดาวเทียมการกำหนดมาตราฐานสถานีภาคพื้นดิน การกำหนดค่าเช่าใช้ช่องสัญญาณดาวเทียม เป็นต้น

วันที่ 10 ตุลาคม ค.ศ. 1964 ได้มีการถ่ายทอดโทรทัศน์พิธีเปิดงานกีฬาโอลิมปิกครั้งที่ 18 จากกรุงโตเกียวผ่านดาวเทียม “SYNCOM III” ไปสหรัฐอเมริกานับได้ว่าเป็นการถ่ายทอดสัญญาณโทรทัศน์ผ่านดาวเทียมครั้งแรกของโลก

วันที่ 6 เมษายน ค.ศ. 1965COMSAT ส่งดาวเทียม “TELSAT 1”หรือในชื่อว่า EARLY BIRD ส่งขึ้นเหนือมหาสมุทรแอตแลนติก ถือว่าเป็นดาวเทียมเพื่อการสื่อสาร เพื่อการพานิชย์ดวงแรกของโลก ในระยะหลังมีหลายประเทศที่มีดาวเทียมเป็นของตนเอง (DOMSAT) เพื่อใช้ในการสื่อสารภายในประเทศ

·         PALAPA ของอินโดนีเซีย

·         SAKURA ของญี่ปุ่น

·         COMSTAR ของอเมริกา

·         THAICOM ของประเทศไทย

ดาวเทียมสื่อสาร

                  ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน นับตั้งแต่ NASA ส่งดาวเทียมสื่อสารเข้าสู่วงโคจรไป จนปัจจุบันมีบริษัทเอกชนจำนวนมากที่เข้ามาบุกเบิกธุรกิจ และทำกำไรมหาศาล จากประโยชน์ต่างๆ ที่ได้จากดาวเทียม
       ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจุส่งสัญญาณไปยังสถานีภาคพื้นดิน สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า "Transponder" ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่สารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
            วิธีการทำงาน
       เนื่องจากดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา ไม่มีการหยุด ดาวเทียมสื่อสารจึงถูกออกแบบมาเป็นอย่างดี ให้สามารถใช้งานในอวกาศได้ประมาณ 10 - 15 ปี โดยที่ดาวเทียมต้องสามารถโคจร และรักษาตำแหน่งให้อยู่ในตำแหน่งที่ถูกต้องได้ตลอดเวลา ดาวเทียมสื่อสารทำงานโดยอาศัยหลักการส่งผ่านสัญญาณถึงกันระหว่างสถานีภาคพื้นดินและ ดาวเทียม ซึ่งมีการทำงาน ดังนี้
       1. ภาคอวกาศ (Space Segment)ประกอบด้วยตัวดาวเทียม ซึ่งมีส่วนประกอบที่สำคัญ ดังนี้
           1.1 ระบบขับเคลื่อนตัวดาวเทียม (Propulsion Subsystem) โดยจะใช้ก๊าซ หรือพลังงานความร้อนจากไฟฟ้าเพื่อให้เกิดแรงผลักดัน หรือแรงกระตุ้นเพื่อให้เกิดการหมุนและรักษาตำแหน่งของดาวเทียม
           1.2 ระบบควบคุมตัวดาวเทียม (Spacecraft Control Subsystem) เพื่อรักษาสมดุลในการทรงตัวของดาวเทียมเพื่อไม่ให้ดาวเทียมหลุดลอย ไปในอวกาศหรือถูกแรงดึงดูดของโลกดึงให้ตกลงมาบนพื้นโลก
           1.3 ระบบอุปกรณ์สื่อสาร (Electronic Communication Subsystem) เนื่องจากดาวเทียมสื่อสารส่วนใหญ่จะมีทรานสปอนเดอร์ (Transponder) หรือช่องสัญญาณดาวเทียมทำหน้าที่รับสัญญาณจากสถานีส่งภาคพื้นดินแล้วแปลงความถี่ของสัญญาณดังกล่าวให้เป็นความถี่ขาลง(Downlink Frequency) พร้อมทั้งขยายสัญญาณดังกล่าวเพื่อให้สามารถส่งกลับสู่สถานีภาคพื้นดินได้
           1.4 ระบบพลังงานไฟฟ้า (Electrical Power Subsystem)ดาวเทียมสื่อสารทุกดวงจะมีแผงเซลล์ไฟฟ้าพลังงานแสงอาทิตย์ ทำหน้าที่เปลี่ยนพลังงานแสงอาทิตย์ให้เป็นพลังงานไฟฟ้าสำหรับอุปกรณ์สื่อสาร และภาคควบคุมต่างๆ บนดาวเทียม นอกจากนี้ยังทำหน้าที่เก็บพลังงานไฟฟ้าไว้ในตัวเก็บประจุไฟฟ้า (Battery) เพื่อสำรองไว้ใช้งานอีกด้วย
           1.5 ระบบสายอากาศ (Antenna Subsystem) จานสายอากาศบนตัวดาวเทียม จะทำหน้าที่รับสัญญาณจากสถานีภาคพื้นดิน โดยใช้จานสายอากาศส่วนใหญ่เป็นแบบ Paraboloid มีการส่ง สัญญาณเป็นชนิดที่มีการกำหนดทิศทาง (Directional Beam)
            1.6 ระบบติดตามและควบคุม (TT&C Telemetry Tracking and Command Subsystem) ใช้ติดตามการทำงานของดาวเทียมและควบคุมรักษาตำแหน่งของดาวเทียมให้โคจรอยู่ในตำแหน่งที่ถูกต้อง เสมอ จากสถานีควบคุมภาคพื้นดิน (Master Earth Station)
             2. ภาคพื้นดิน (Ground Segment) : สถานีดาวเทียมภาคพื้นดิน (Satellite Earth Station) ประกอบด้วย 4 ส่วนหลัก ๆ คือ
          2.1 อุปกรณ์จานสายอากาศ(Antenna Subsystem) ต้องมีความสามารถในการรวมพลังงานไปในทิศทางที่ตรงกับดาวเทียม
และต้องมีความสามารถในการรับสัญญาณจากดาวเทียมได้
          2.2 ภาคอุปกรณ์สัญญาณวิทยุ (Radio Frequency Subsystem)ทำหน้าที่รับส่งสัญญาณความถี่วิทยุที่ใช้งานเป็นหลัก
          2.3 ภาคอุปกรณ์แปลงสัญญาณวิทยุ (RF/IF Subsystem) ประกอบด้วย
                   1) Up Converter Partทำหน้าที่แปลงย่านความถี่ IF ซึ่งรับจากSatellite Modem ให้เป็นความถี่ย่านที่ใช้งานกับระบบดาวเทียมต่าง ๆ จากนั้นส่งสัญญาณที่แปลงความถี่แล้วไปให้ภาคขยายสัญญาณย่านความถี่สูง เพื่อส่งสัญญาณไปยังดาวเทียม
                  2) Down Converter Part ทำหน้าที่แปลงความถี่ของสัญญาณ ที่ได้รับจากดาวเทียมในย่านความถี่ของดาวเทียมไปเป็นความถี่ย่าน
IF เพื่อส่งต่อให้แก่ภาค Demodulatorของ Satellite Modem
          2.4 อุปกรณ์ Modem (Modulator / Demodutator) ทำหน้าที่แปลงข้อมูลที่ต้องการส่งผ่านระบบสื่อสารผ่านดาวเทียมให้อยู่ในรูปของ สัญญาณคลื่นวิทยุที่มีข้อมูลผสมอยู่ให้ได้เป็นข้อมูลที่สามารถนำไปใช้งานต่อไป

ระบบไมโครเวฟที่ใช้เชื่อมโยงระหว่างระบบโทรศัพท์

สัญญาณไมโครเวฟ (Microwave)

       เป็นคลื่นความถี่วิทยุชนิดหนึ่งที่มีความถี่อยู่ระหว่าง 0.3GHz – 300GHz ส่วนในการใช้งานนั้นส่วนมากนิยมใช้ความถี่ระหว่าง 1GHz – 60GHz เพราะเป็นย่านความถี่ที่สามารถผลิตขึ้นได้ด้วยอุปกรณ์อิเล็กทรอนิกส์เป็นสื่อกลางในการสื่อสารที่มีความเร็วสูงในระดับกิกะเฮิรตซ์ (GHz) และเนื่องจากความของคลื่นมีหน่วยวัดเป็นไมโครเมตร จึงเรียกชื่อว่า “ไมโครเวฟ” การส่งข้อมูลโดยอาศัยสัญญาณไมโครเวฟซึ่งเป็นสัญญาณคลื่นแม่เหล็กไฟฟ้าไปในอากาศพร้อมกับข้อมูลที่ต้องการส่ง และจะต้องมีสถานที่ทำหน้าที่ส่งและรับข้อมูล และเนื่องจากสัญญาณไมโครเวฟจะเดินทางเป็นเส้นตรงในระดับสายตา (Line of sight transmission) ไม่สามารถเลี้ยวหรือโค้งตามขอบโลกที่มีความโค้งได้ จึงต้องมีการตั้งสถานีรับ-ส่งข้อมูลเป็นระยะๆ และส่งข้อมูลต่อกันเป็นทอดๆ ระหว่างสถานีต่อสถานีจนกว่าจะถึงสถานีปลายทาง หากลักษณะภูมิประเทศ มีภูเขาหรือตึกสูงบดบังคลื่นแล้ว ก็จะทำให้ไม่สามารถส่งสัญญาณไปยังเป้าหมายได้ ดังนั้นแต่ละสถานีจึงจำเป็นตั้งอยู่ในที่สูง เช่น ดาดฟ้า ตึกสูง หรือยอดดอยเพื่อหลีกเลี่ยงการชนเนื่องจากแนวการเดินทางที่เป็นเส้นตรงของสัญญาณดังที่กล่าวมาแล้ว การส่งข้อมูลด้วยสื่อกลางชนิดนี้เหมาะกับการส่งข้อมูลในพื้นที่ห่างไกลมากๆ และทุรกันดาร

ข้อดีและข้อเสียของระบบไมโครเวฟ
ข้อดี
1. ใช้ในพื้นที่ซึ่งการเดินสายกระทำได้ไม่สะดวก
2. ราคาถูกกว่าสายใยแก้วนำแสงและดาวเทียม
3. ติดตั้งง่ายกว่าสายใยแก้วนำแสงและดาวเทียม
4. อัตราการส่งข้อมูลสูง
ข้อเสีย

1.    ต้องไม่มีสิ่งใดมากีดขวางเส้นสายตาของทั้งเครื่องรับและเครื่องส่ง

2.    สัญญาณถูกรบกวนหรือแทรกแซงได้ง่าย

3.    ถูกดักจับสัญญาณได้ง่าย

4.    คลื่นไมโครเวฟไม่สามารถผ่านสิ่งกีดขวางได้และแม้ว่าจะปรับทิศทางการส่งได้อย่างเที่ยงตรงที่จานส่งสัญญาณแล้วก็ตาม สัญญาณไมโครเวฟอาจเกิดการหักเหในระหว่างทาง สัญญาณบางส่วนที่เกิดการหักเหอาจเดินทางมาถึงจานรับสัญญาณช้ากว่าปกติและอาจเกิดการลบล้างกับสัญญาณปกติทำให้สัญญาณในช้วงนั้นถูกลบล้างไป ลักษณะเช่นนี้เรียกว่า "multipath fading"ซึ่งมีสภาพภูมิอากาศและความถี่ของสัญญาณเป็นองค์ประกอบหลัก


สำหรับการใช้งานคลื่นไมโครเวฟนั้นจะสามารถแบ่งได้ดังต่อไปนี้



1. ระบบส่งสัญญาณ (Transmission)

               ในการโทรคมนาคมจากจุดหนึ่งไปยังอีกจุดหนึ่งเช่นสถานีต่อผ่านให้กับโครงข่ายโทรศัพท์ทางไกลโดยทั่วไปมักใช้ในย่านความถี่5.925 ถึง 6.425 กิกะเฮิรตซ์ หรือในระบบโทรทัศน์การถ่ายทอดสัญญาณจากรถถ่ายทอดไปยังห้องส่งจากห้องส่งไปยังเครื่องส่งไมโครเวฟ การเชื่อมต่อจากห้องส่งไปยังเครื่องส่งอาจใช้ความถี่ในช่วง 947 ถึง 952 เมกะเฮิรตซ์เป็นต้น


2. ระบบตรวจจับและวัดระยะด้วยคลื่น หรือที่เรียกว่าเรดาร์ (RADAR : Radio Detection And Ranging)               การส่งคลื่นวิทยุออกไปในมุมแคบจากสายอากาศเมื่อคลื่นวิทยุกระทบกับวัตถุก็จะสะท้อนกลับมาแล้วนำสัญญาณมาเปรียบเทียบกับสัญญาณเดิมและแปรออกมาป็นข้อมูลที่ต้องการ สำหรับความถี่ที่ใช้ก็ยังอยู่ในช่วง 8.5 ถึง 9.2 กิกะเฮิรตซ์ และ 13.25 ถึง 13.40 กิกะเฮิรตซ์ หรือในการวัดระยะทางในระบบนำร่องของการเดินอากาศอุปกรณ์วัดระยะที่เรียกว่า ดีเอ็มอี (DME : Distance Measuring Equipment) จะใช้ความถี่ที่ 962 ถึง 1,213 เมกะเฮิรตซ 


3. เครื่องมือในอุตสาหกรรม

               เครื่องมือในอุตสาหกรรม เช่น การนำความร้อนด้วยคลื่นไมโครเวฟ การเชื่อมและติดวัตถุหรือในรูปของเครื่องใช้ในครัวเรือนเช่น เตาอบและทำอาหารอย่างเร็วที่ใช้คลื่นไมโครเวฟที่ความถี่ 2.45 กิกะเฮิรตซ์


4. ระบบสื่อสารผ่านดาวเทียมในอวกาศ (Satellite Communication) 

               ซึ่งคลื่นไมโครเวฟเป็นหัวใจสำคัญในระบบดังกล่าว โครงสร้างของการใช้งานคลื่นไมโครเวฟในระบบส่งสัญญาณ ซึ่งเป็นการใช้งานที่มีอยู่อย่างแพร่หลายมากที่สุดในสาขาโทรคมนาคม โดยสามารถส่งข้อมูลทั้งอะนาลอกและดิจิตอลระหว่างจุดต่อจุดได้เป็นอย่างดี การใช้งานที่มีอยู่มากที่สุดก็คือไมโครเวฟลิงค์ ซึ่งหากมีการเชื่อมโยงกันระหว่างจุดสองจุดจะถูกเรียกว่าหนึ่งฮอป (Hop) องค์ประกอบของระบบเบื้องต้นได้แก่สายอากาศสองชุดซึ่งอาจถูกวางอยู่ห่างกันเพียงสองกิโลเมตร หรือการเชื่อมโยงระหว่างจุดแต่เป็นระยะทางไกลหลายช่วงเป็นหลายฮอป จนสามารถเรียกได้ว่าเป็นแบ็กโบนให้กับระบบโทรคมนาคมได้ของระบบเบื้องต้นได้แก่สายอากาศสองชุดซึ่งอาจถูกวางอยู่ห่างกันเพียงสองกิโลเมตร หรือการเชื่อมโยงระหว่างจุดแต่เป็นระยะทางไกลหลายช่วงเป็นหลายฮอป จนสามารถเรียกได้ว่าเป็นแบ็กโบนให้กับระบบโทรคมนาคมได้ของระบบเบื้องต้นได้แก่สายอากาศสองชุดซึ่งอาจถูกวางอยู่ห่างกันเพียงสองกิโลเมตร หรือการเชื่อมโยงระหว่างจุดแต่เป็นระยะทางไกลหลายช่วงเป็นหลายฮอป จนสามารถเรียกได้ว่าเป็นแบ็กโบนให้กับระบบโทรคมนาคมได้ข้อมูลที่จะส่งด้วยไมโครเวฟมักถูกทำการมัลติเพล็กซิ่งก่อน จากนั้นจึงถูกมอดูเลตไปสู่ความถี่กลางค่าหนึ่ง (Intermediate Frequency) และทำการเลื่อนความถี่ (อัพคอนเวิร์ต) ไปยังความถี่ในย่านไมโครเวฟแล้วส่งออกไปในอากาศ ในด้านรับก็จะทำการแปลงกลับมาที่ความถี่กลางและดีมอดูเลตไปเป็นสัญญาณที่ได้รับการมัลติเพล็กซ์เช่นเดียวกับการส่ง สัญญาที่ได้หลังจากการทำมัลติเพล็กซิ่งมักถูกเรียกว่าสัญญาณเบสแบนด์ (BB : BaseBand Signal)ในหนึ่งฮอปอาจจะสามารถเชื่อมต่อสัญญาณได้ในระยะทางประมาณ 30 ถึง 60 กิโลเมตร และหากนำสายอาาศไปติดตั้งบนยอดเขาก็อาจสามารถติดต่อกับสถานีถัดไปได้ในระะทางถึง 200 กิโลเมตรได้ เนื่องจากระบบไมโครเวฟเป็นการเชื่อมโยงสัญญาณในแบบแนวสายตาหรือที่เรียกว่าไลน์ออฟไซต์ (Line of sight) แต่ในการส่งสัญญสัญญาณระหว่างกันก็ยังมีปัจจัยอื่นที่มีผลต่อการส่งของสัญญาณทำให้แม้จะตั้งสายอากาศให้ตรงกันก็ไม่อาจส่งสัญญาณได้อย่างมีประสิทธิภาพเพื่อที่จะให้เข้าใจการทำงานของระบบไมโครเวฟและส่วนประกอบต่าง ๆ ขอให้พิจารณาพื้นฐานการทำงานของอุปกรณ์ต่าง ๆ ที่เกี่ยวข้องกับคลื่นไมโครเวฟกันก่อน เนื่องจากว่าอุปกรณ์ไมโครเวฟมีความแตกต่างจากอุปกรณ์โดยทั่วไปอย่างมาก เพราะที่ความถี่สูงจะมีการสูญเสียพลังงานจากการแพร่ของคลื่นแม่เหล็กไฟฟ้าออกจากตัวนำธรรมดามาก


หลักการ ทํา งานของเครื่องรับวิทยุ AM

    

       คลื่นไมโครเวฟมีย่านความถี่กว้างมากจึงถูกนำไปประยุกต์ใช้งานได้หลายชนิด เป็นที่นิยมอย่างแพร่หลาย ทั้งงานในด้านสื่อสาร งานด้านตรวจจับวัตถุเคลื่อนที่ และงานด้านอุตสาหกรรม เป็นต้น


หลักการ ทํา งานของเครื่องรับวิทยุ AM


หลักการ ทํา งานของเครื่องรับวิทยุ AM


ระบบเชื่อมต่อสัญญาณในระดับสายตา 

       ใช้ในงานสื่อสารโทรคมนาคมระหว่างงจุดหนึ่งไปอีกจุดหนึ่ง เช่นการสื่อสารโทรศัพท์ทางไกล ใช้การส่งผ่านสัญญาณโทรศัพท์จากจุดหนึ่งไปอีกจุดหนึ่งไปยังสถานีทวนสัญญาณอีกจุดหนึ่งและส่งผ่านสัญญาณโทรศัพท์ไปเรื่อย ๆ จนถึงปลายทางและการถ่ายทอดโทรทัศน์จะทำการถ่ายทอดสัญญาณโทรทัศน์จากห้องส่งโทรทัศน์หรือจากรถถ่ายทอดสดไปยังเครื่องส่งไมโครเวฟ ส่งไปปลายทางที่สายอากาศแพร่กระจายคลื่นของโทรทัศน์ช่องนั้น ระบบเชื่อมต่อสัญญาณในระดับสายตา


สัญญาณไมโครเวฟ (Microwave)

       เป็นคลื่นความถี่วิทยุชนิดหนึ่งที่มีความถี่อยู่ระหว่าง 0.3GHz – 300GHz ส่วนในการใช้งานนั้นส่วนมากนิยมใช้ความถี่ระหว่าง 1GHz – 60GHz เพราะเป็นย่านความถี่ที่สามารถผลิตขึ้นได้ด้วยอุปกรณ์อิเล็กทรอนิกส์เป็นสื่อกลางในการสื่อสารที่มีความเร็วสูงในระดับกิกะเฮิรตซ์ (GHz) และเนื่องจากความของคลื่นมีหน่วยวัดเป็นไมโครเมตร จึงเรียกชื่อว่า “ไมโครเวฟ” การส่งข้อมูลโดยอาศัยสัญญาณไมโครเวฟซึ่งเป็นสัญญาณคลื่นแม่เหล็กไฟฟ้าไปในอากาศพร้อมกับข้อมูลที่ต้องการส่ง และจะต้องมีสถานที่ทำหน้าที่ส่งและรับข้อมูล และเนื่องจากสัญญาณไมโครเวฟจะเดินทางเป็นเส้นตรงในระดับสายตา (Line of sight transmission) ไม่สามารถเลี้ยวหรือโค้งตามขอบโลกที่มีความโค้งได้ จึงต้องมีการตั้งสถานีรับ-ส่งข้อมูลเป็นระยะๆ และส่งข้อมูลต่อกันเป็นทอดๆ ระหว่างสถานีต่อสถานีจนกว่าจะถึงสถานีปลายทาง หากลักษณะภูมิประเทศ มีภูเขาหรือตึกสูงบดบังคลื่นแล้ว ก็จะทำให้ไม่สามารถส่งสัญญาณไปยังเป้าหมายได้ ดังนั้นแต่ละสถานีจึงจำเป็นตั้งอยู่ในที่สูง เช่น ดาดฟ้า ตึกสูง หรือยอดดอยเพื่อหลีกเลี่ยงการชนเนื่องจากแนวการเดินทางที่เป็นเส้นตรงของสัญญาณดังที่กล่าวมาแล้ว การส่งข้อมูลด้วยสื่อกลางชนิดนี้เหมาะกับการส่งข้อมูลในพื้นที่ห่างไกลมากๆ และทุรกันดาร

ข้อดีและข้อเสียของระบบไมโครเวฟ
ข้อดี
1. ใช้ในพื้นที่ซึ่งการเดินสายกระทำได้ไม่สะดวก
2. ราคาถูกกว่าสายใยแก้วนำแสงและดาวเทียม
3. ติดตั้งง่ายกว่าสายใยแก้วนำแสงและดาวเทียม
4. อัตราการส่งข้อมูลสูง
ข้อเสีย

1.    ต้องไม่มีสิ่งใดมากีดขวางเส้นสายตาของทั้งเครื่องรับและเครื่องส่ง

2.    สัญญาณถูกรบกวนหรือแทรกแซงได้ง่าย

3.    ถูกดักจับสัญญาณได้ง่าย

4.    คลื่นไมโครเวฟไม่สามารถผ่านสิ่งกีดขวางได้และแม้ว่าจะปรับทิศทางการส่งได้อย่างเที่ยงตรงที่จานส่งสัญญาณแล้วก็ตาม สัญญาณไมโครเวฟอาจเกิดการหักเหในระหว่างทาง สัญญาณบางส่วนที่เกิดการหักเหอาจเดินทางมาถึงจานรับสัญญาณช้ากว่าปกติและอาจเกิดการลบล้างกับสัญญาณปกติทำให้สัญญาณในช้วงนั้นถูกลบล้างไป ลักษณะเช่นนี้เรียกว่า "multipath fading"ซึ่งมีสภาพภูมิอากาศและความถี่ของสัญญาณเป็นองค์ประกอบหลัก


สำหรับการใช้งานคลื่นไมโครเวฟนั้นจะสามารถแบ่งได้ดังต่อไปนี้



1. ระบบส่งสัญญาณ (Transmission)

               ในการโทรคมนาคมจากจุดหนึ่งไปยังอีกจุดหนึ่งเช่นสถานีต่อผ่านให้กับโครงข่ายโทรศัพท์ทางไกลโดยทั่วไปมักใช้ในย่านความถี่5.925 ถึง 6.425 กิกะเฮิรตซ์ หรือในระบบโทรทัศน์การถ่ายทอดสัญญาณจากรถถ่ายทอดไปยังห้องส่งจากห้องส่งไปยังเครื่องส่งไมโครเวฟ การเชื่อมต่อจากห้องส่งไปยังเครื่องส่งอาจใช้ความถี่ในช่วง 947 ถึง 952 เมกะเฮิรตซ์เป็นต้น


2. ระบบตรวจจับและวัดระยะด้วยคลื่น หรือที่เรียกว่าเรดาร์ (RADAR : Radio Detection And Ranging)               การส่งคลื่นวิทยุออกไปในมุมแคบจากสายอากาศเมื่อคลื่นวิทยุกระทบกับวัตถุก็จะสะท้อนกลับมาแล้วนำสัญญาณมาเปรียบเทียบกับสัญญาณเดิมและแปรออกมาป็นข้อมูลที่ต้องการ สำหรับความถี่ที่ใช้ก็ยังอยู่ในช่วง 8.5 ถึง 9.2 กิกะเฮิรตซ์ และ 13.25 ถึง 13.40 กิกะเฮิรตซ์ หรือในการวัดระยะทางในระบบนำร่องของการเดินอากาศอุปกรณ์วัดระยะที่เรียกว่า ดีเอ็มอี (DME : Distance Measuring Equipment) จะใช้ความถี่ที่ 962 ถึง 1,213 เมกะเฮิรตซ 


3. เครื่องมือในอุตสาหกรรม

               เครื่องมือในอุตสาหกรรม เช่น การนำความร้อนด้วยคลื่นไมโครเวฟ การเชื่อมและติดวัตถุหรือในรูปของเครื่องใช้ในครัวเรือนเช่น เตาอบและทำอาหารอย่างเร็วที่ใช้คลื่นไมโครเวฟที่ความถี่ 2.45 กิกะเฮิรตซ์


4. ระบบสื่อสารผ่านดาวเทียมในอวกาศ (Satellite Communication) 

               ซึ่งคลื่นไมโครเวฟเป็นหัวใจสำคัญในระบบดังกล่าว โครงสร้างของการใช้งานคลื่นไมโครเวฟในระบบส่งสัญญาณ ซึ่งเป็นการใช้งานที่มีอยู่อย่างแพร่หลายมากที่สุดในสาขาโทรคมนาคม โดยสามารถส่งข้อมูลทั้งอะนาลอกและดิจิตอลระหว่างจุดต่อจุดได้เป็นอย่างดี การใช้งานที่มีอยู่มากที่สุดก็คือไมโครเวฟลิงค์ ซึ่งหากมีการเชื่อมโยงกันระหว่างจุดสองจุดจะถูกเรียกว่าหนึ่งฮอป (Hop) องค์ประกอบของระบบเบื้องต้นได้แก่สายอากาศสองชุดซึ่งอาจถูกวางอยู่ห่างกันเพียงสองกิโลเมตร หรือการเชื่อมโยงระหว่างจุดแต่เป็นระยะทางไกลหลายช่วงเป็นหลายฮอป จนสามารถเรียกได้ว่าเป็นแบ็กโบนให้กับระบบโทรคมนาคมได้ของระบบเบื้องต้นได้แก่สายอากาศสองชุดซึ่งอาจถูกวางอยู่ห่างกันเพียงสองกิโลเมตร หรือการเชื่อมโยงระหว่างจุดแต่เป็นระยะทางไกลหลายช่วงเป็นหลายฮอป จนสามารถเรียกได้ว่าเป็นแบ็กโบนให้กับระบบโทรคมนาคมได้ของระบบเบื้องต้นได้แก่สายอากาศสองชุดซึ่งอาจถูกวางอยู่ห่างกันเพียงสองกิโลเมตร หรือการเชื่อมโยงระหว่างจุดแต่เป็นระยะทางไกลหลายช่วงเป็นหลายฮอป จนสามารถเรียกได้ว่าเป็นแบ็กโบนให้กับระบบโทรคมนาคมได้ข้อมูลที่จะส่งด้วยไมโครเวฟมักถูกทำการมัลติเพล็กซิ่งก่อน จากนั้นจึงถูกมอดูเลตไปสู่ความถี่กลางค่าหนึ่ง (Intermediate Frequency) และทำการเลื่อนความถี่ (อัพคอนเวิร์ต) ไปยังความถี่ในย่านไมโครเวฟแล้วส่งออกไปในอากาศ ในด้านรับก็จะทำการแปลงกลับมาที่ความถี่กลางและดีมอดูเลตไปเป็นสัญญาณที่ได้รับการมัลติเพล็กซ์เช่นเดียวกับการส่ง สัญญาที่ได้หลังจากการทำมัลติเพล็กซิ่งมักถูกเรียกว่าสัญญาณเบสแบนด์ (BB : BaseBand Signal)ในหนึ่งฮอปอาจจะสามารถเชื่อมต่อสัญญาณได้ในระยะทางประมาณ 30 ถึง 60 กิโลเมตร และหากนำสายอาาศไปติดตั้งบนยอดเขาก็อาจสามารถติดต่อกับสถานีถัดไปได้ในระะทางถึง 200 กิโลเมตรได้ เนื่องจากระบบไมโครเวฟเป็นการเชื่อมโยงสัญญาณในแบบแนวสายตาหรือที่เรียกว่าไลน์ออฟไซต์ (Line of sight) แต่ในการส่งสัญญสัญญาณระหว่างกันก็ยังมีปัจจัยอื่นที่มีผลต่อการส่งของสัญญาณทำให้แม้จะตั้งสายอากาศให้ตรงกันก็ไม่อาจส่งสัญญาณได้อย่างมีประสิทธิภาพเพื่อที่จะให้เข้าใจการทำงานของระบบไมโครเวฟและส่วนประกอบต่าง ๆ ขอให้พิจารณาพื้นฐานการทำงานของอุปกรณ์ต่าง ๆ ที่เกี่ยวข้องกับคลื่นไมโครเวฟกันก่อน เนื่องจากว่าอุปกรณ์ไมโครเวฟมีความแตกต่างจากอุปกรณ์โดยทั่วไปอย่างมาก เพราะที่ความถี่สูงจะมีการสูญเสียพลังงานจากการแพร่ของคลื่นแม่เหล็กไฟฟ้าออกจากตัวนำธรรมดามาก


หลักการ ทํา งานของเครื่องรับวิทยุ AM

    

       คลื่นไมโครเวฟมีย่านความถี่กว้างมากจึงถูกนำไปประยุกต์ใช้งานได้หลายชนิด เป็นที่นิยมอย่างแพร่หลาย ทั้งงานในด้านสื่อสาร งานด้านตรวจจับวัตถุเคลื่อนที่ และงานด้านอุตสาหกรรม เป็นต้น


หลักการ ทํา งานของเครื่องรับวิทยุ AM


หลักการ ทํา งานของเครื่องรับวิทยุ AM


ระบบเชื่อมต่อสัญญาณในระดับสายตา 

       ใช้ในงานสื่อสารโทรคมนาคมระหว่างงจุดหนึ่งไปอีกจุดหนึ่ง เช่นการสื่อสารโทรศัพท์ทางไกล ใช้การส่งผ่านสัญญาณโทรศัพท์จากจุดหนึ่งไปอีกจุดหนึ่งไปยังสถานีทวนสัญญาณอีกจุดหนึ่งและส่งผ่านสัญญาณโทรศัพท์ไปเรื่อย ๆ จนถึงปลายทางและการถ่ายทอดโทรทัศน์จะทำการถ่ายทอดสัญญาณโทรทัศน์จากห้องส่งโทรทัศน์หรือจากรถถ่ายทอดสดไปยังเครื่องส่งไมโครเวฟ ส่งไปปลายทางที่สายอากาศแพร่กระจายคลื่นของโทรทัศน์ช่องนั้น ระบบเชื่อมต่อสัญญาณในระดับสายตา


เรดาร์ (RADAR)

เรดาร์ได้พัฒนาขึ้นระหว่างสงครามโลกครั้งที่ 2 เพื่อตรวจหาตำแหน่งและเส้นทางของเครื่องบินจากสถานีภาคพื้นดิน และใช้ในการนำทางในสภาพอากาศที่ไม่ดี RADAR ย่อมาจาก “Radio Detection And Ranging”เรดาร์เป็นระบบการตรวจวัดที่ต้องมีแหล่งของพลังงานที่มนุษย์สร้างขึ้น และส่งสัญญาณในช่วงคลื่นไมโครเวฟไปยังวัตถุเป้าหมายแล้ววัดความเข้มข้นของพลังงานที่กระจัดกระจายกลับ (Backscatter) ไปสู่เครื่องรับรู้ ซึ่งเป็นระบบการรับรู้แบบแอ็กทิฟ ดังนั้นการรับรู้หรือได้มาซึ่งภาพจากเรดาร์จึงสามารถถ่ายภาพได้ทั้งกลางวัน และกลางคืน ในทุกสภาพอากาศ ทะลุทะลวงเมฆได้

ระบบเรดาร์ถ่ายภาพในแนวเอียงซึ่งใช้สายอากาศที่ติดตั้งเชื่อมประจำที่บนเครื่องบินโดยชี้ไปทางวัตถุเป้าหมาย เรียกว่า เรดาร์มองข้าง (Side-Looking Radar : SLR หรือ Side-Looking Airborne : SLAR) ความละเอียดของเรดาร์ขึ้นอยู่กับขนาดของสายอากาศ ระบบเรดาร์จากห้วงอวกาศเริ่มขึ้นเมื่อปี ค.ศ. 1978 เมื่อสหรัฐอเมริกาได้ส่งดาวเทียม SEASAT และหลังจากนั้นก็มีการศึกษาระบบเรดาร์จากห้วงอวกาศโดยกระสวยถ่ายภาพจากเรดาร์ (Shuttle Imaging Radar : SIR) ต่อเนื่องตั้งแต่ปี ค.ศ. 1980 นอกจากนี้ได้มีการพัฒนาระบบเรดาร์บนดาวเทียมเรื่อยมาจนถึงปัจจุบัน เช่น ดาวเทียม ERS JERS ENVISAT RADARSAT และ ALOS เป็นต้น

ระบบการถ่ายภาพเรดาร์ประกอบด้วย เครื่องส่งสัญญาณ (Transmitter) เครื่องรับสัญญาณ(Receiver) อุปกรณ์อิเล็กทรอนิกส์ และคอมพิวเตอร์ เพื่อประมวลผลและบันทึกข้อมูล เครื่องส่งสัญญาณส่งพัลส์ของพลังงานไมโครเวฟเป็นช่วงเท่าๆ กัน และปรับระยะโดยจานตั้งฉากกับทิศทางคลื่นที่ลงสู่เป้าหมายเป็นมุมเอียง เมื่อคลื่นเรดาร์กระทบกับเป้าหมายสัญญาณจะกระจัดกระจายกลับไปยังเครื่องรับสัญญาณ ข้อมูลที่กระจัดกระจายกลับในแต่ละครั้ง ความเข้มของสัญญาณ เวลา และมุมที่ตกกระทบเป้าหมาย ที่ได้รับจากระบบรับรู้จะถูกคำนวณเพื่อบอกตำแหน่งของวัตถุเป้าหมาย ภาพเรดาร์ที่ประมวลผลจะเป็นความเข้ม (Strength) ของสัญญาณกลับซึ่งเป็นระดับความสว่างของภาพ

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพแสดงพื้นฐานของภาพเรดาร์
ที่มา : Lillesand, T.M. and Kiffer, R.W. (1994)

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพแสดงพื้นฐานของภาพเรดาร์
ที่มา : Lillesand, T.M. and Kiffer, R.W. (1994)

          การถ่ายภาพในแนวเอียงดังภาพเป็นแนวที่ตั้งฉากกับทิศทางการบิน ซึ่งเรียกว่า ทิศทางพิสัย(Range direction) ส่วนทิศทางของการบินเรียกว่า ทิศทางแอซิมัท (Azimuth direction) ดังนั้นความละเอียดของเรดาร์จึงประกอบด้วย 2 ทิศทาง ในบทนี้มีวัตถุประสงค์หลักเพื่อที่จะนำเสนอภาพรวมของหลักการเบื้องต้นของเรดาร์ ซึ่งใช้เป็นพื้นฐานในการเข้าใจระบบเรดาร์ และปฏิสัมพันธ์เบื้องต้นของเรดาร์กับวัตถุเป้าหมายอย่างย่อ อันเป็นแนวทางที่จะศึกษาในรายละเอียดต่อไป เพราะในปัจจุบันข้อมูลจากดาวเทียมสำรวจโลกไม่ว่าจะเป็นข้อมูลจากดาวเทียม RADARSAT และ ALOS เป็นข้อมูลด้านระบบรับรู้แบบแอ็กทิฟ ถ้าหากปราศจากความรู้ความเข้าใจระบบเรดาร์ และปฏิสัมพันธ์ระหว่างคลื่นเรดาร์ แล้วการแปลตีความภาพจะไม่มีความถูกต้องเลย อย่างน้อยในส่วนนี้จะเป็นช่องทางหนึ่งที่ผู้สนใจมีความรู้พอสมควร ดังนั้นการนำเสนอในที่นี้จะแบ่งเป็น 2 เรื่องหลัก คือ พารามิเตอร์ของระบบ (System parameters) และพารามิเตอร์ด้านสิ่งแวดล้อมหรือพื้นที่เป้าหมาย (Environment/ Target parameters)1

1. สมการเรดาร์ (RADAR equation)

หลักการ ทํา งานของเครื่องรับวิทยุ AM

PR = พลังงานทั้งหมดที่รับ (Total power received)

PT = พลังงานที่ส่งออก (Power transmitted)

σ0 = การกระจายเรดาร์ต่อหน่วยพื้นที่ หรือสัมประสิทธิ์การกระจัดกระจาย (Radar scatter coefficient)

A = พื้นที่หน้าตัด (RADAR cross section)

G = อัตราการขยายจากสายอากาศ (Antenna gain)

R = ระยะทางแนวพิสัย (Range)

λ = ช่วงคลื่น (Wavelength)

จากสมการจะเห็นได้ว่ามีปัจจัยหลักที่ส่งผลต่อความเข้มของพลังงานที่กระจัดกระจายกลับ คือ พลังงานที่ส่งออกความยาวคลื่น ขนาดของสายอากาศรับสัญญาณ เรขาคณิตของการถ่ายภาพ เช่น ความกว้างของลำแสงมุมตกกระทบ และระยะทาง เป็นต้น

2. สเปกตรัมแม่เหล็กไฟฟ้าช่วงคลื่นเรดาร์

ช่วงคลื่นเรดาร์เป็นช่วงคลื่นที่สูงกว่าคลื่นแสงสว่างและคลื่นความร้อน ซึ่งในทางเทคโนโลยีการรับรู้จากระยะไกล อยู่ระหว่าง 1 มิลลิเมตร ถึง 1 เมตร ซึ่งเป็นช่วงคลื่นไมโครเวฟ (ภาพที่ 3.58) และมักนิยมใช้ตัวอักษรที่เป็นมาตรฐานบอกช่วงคลื่น ตามภาพ เรียงลำดับจากสั้นไปยาว คือ แบนด์ Ka K Ku X C S L UHF และ P ซึ่งได้แสดงความสัมพันธ์ระหว่างแบนด์ต่างๆ กับความยาวคลื่นและความถี่

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพสเปกตรัมแม่เหล็กไฟฟ้า

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพแสดงความยาวคลื่น ความถี่ และตัวอักษรแบนด์เรดาร์
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

3. โพลาไรเซชัน (Polarization)

โพลาไรเซชัน หมายถึง ทิศทางการแผ่กระจายของสนามแม่เหล็กไฟฟ้าของคลื่นแม่เหล็กไฟฟ้า ซึ่งจะมีการกระจายทั้งแนวตั้งและแนวนอนโดยระบบเรดาร์สามารถที่จะส่งหรือรับสัญญาณคลื่นแม่เหล็กไฟฟ้าในทิศทางการแผ่กระจายทั้งแนวตั้ง (Vertical : V) และแนวนอน(Horizontal : H) เมื่อส่งคลื่นแม่เหล็กไฟฟ้าในทิศทางการแผ่กระจายทางแนวนอน (H) และรับคลื่นการแผ่กระจายในแนวนอน (H) จะใช้สัญลักษณ์ HH ในทำนองเดียวกันก็มีการรับส่งเป็น HV VH และ VV ในทิศทางการแผ่กระจาย ทั้งนี้ปฏิสัมพันธ์ระหว่างคลื่นเรดาร์กับวัตถุสำหรับโพลาไรเซชันที่ต่างกันจะไม่เหมือนกันขึ้นอยู่กับคุณสมบัติของวัตถุ

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพโพลาไรเซชัน

4. พิสัยและแอซิมัท (Range and Azimuth)

การถ่ายภาพเรดาร์เป็นแบบระบบการถ่ายด้านข้างและจะสะสมข้อมูลไปอย่างต่อเนื่อง มิติของการถ่ายภาพที่มีทิศทางไปตามแนวการบิน เรียกว่า แอซิมัท มิติของการถ่ายภาพที่ขวางแนวการบิน เรียกว่า พิสัย ขอบภาพที่ใกล้จุดตรงใต้เรดาร์ เรียกว่า ขอบพิสัยใกล้ (Near range edge) ส่วนขอบภาพที่ไกล เรียกว่า ขอบพิสัยไกล (Far range edge)

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพเรขาคณิตของเรดาร์จากเครื่องบิน

5. ความละเอียด

ความละเอียด หมายถึง ความสามารถของระบบที่จะแยกจากกันระหว่างวัตถุสองอย่างที่ใกล้กันในระบบเรดาร์ ความละเอียดจะกำหนดทั้งทิศทางตามพิสัย (ขวางแนวโคจร) และทิศทางตามแอซิมัท (ตามแนวโคจร) โดยมีรายละเอียดบางประการดังนี้

ทิศทางพิสัย

-  ความละเอียดตามแนวพิสัยของเรดาร์ช่องเปิดสังเคราะห์ (Synthetic Aperture Radar : SAR) ถูกกำหนดโดยเครื่องเรดาร์ที่สร้างขึ้นและหน่วยประมวลผล- ความละเอียดขึ้นอยู่กับความยาวของพัลส์ ความยาวพัลส์ที่สั้นจะให้ความละเอียดดีขึ้น- ข้อมูลเรดาร์จะถูกสร้างขึ้นจากข้อมูลที่ได้รับในแนวของพิสัยเอียง (Slant range) แต่เมื่อทำภาพจะถูกฉายลงในแนวพิสัยราบ (Ground range)

ทิศทางแอซิมัท

- ความละเอียดตามแอซิมัทถูกกำหนดโดยความกว้างของมุมลำแสงของแนวพื้นที่- วัตถุที่อยู่ใกล้กันสามารถแยกจากกันได้ จะต้องมีระยะทางในแนวแอซิมัทยาวกว่าความกว้างของลำแสงบนพื้นดิน- เรดาร์ช่องเปิดสังเคราะห์ได้ชื่อจากกระบวนการวิเคราะห์ทางตามแนวโคจร และต้องมีความละเอียดตามแนวโคจร น้อยกว่าความกว้างของลำแสง (Beam width) ที่ส่งออกจากสายอากาศส่งสัญญาณ

ความละเอียดของภาพเรดาร์กำหนดทั้งในทิศทางตามแนวโคจร และตามแนวความกว้างหรือขวางแนวโคจร

โดย    rR = ความละเอียดตามแนวพิสัย

rA = ความละเอียดตามแนวแอซิมัท

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพเซลล์ความละเอียด (Resolution cell)

6. ความสัมพันธ์ระหว่างมุมตกกระทบ (Incident angle) มุมก้ม (Depression angle) และมุมมอง (Look angle)

มุมตกกระทบ (θ)       หมายถึง มุมระหว่างคลื่นเรดาร์ที่ตกกระทบกับแนวดิ่งของพื้นผิวโลก

มุมก้ม (β)               หมายถึง มุมระหว่างแนวนอนกับแนวคลื่นเรดาร์

มุมมอง (ø)                หมายถึง มุมระหว่างแนวดิ่งกับคลื่นเรดาร์

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพแสดงความสัมพันธ์ระหว่างมุมมอง (ø) มุมก้ม (β) และมุมตกกระทบ (θ) เมื่อพื้นโลกเรียบ

7. มุมตกกระทบเฉพาะที่ (Local incident angle : LIA)

มุมตกกระทบเฉพาะที่ หมายถึง มุมระหว่างคลื่นเรดาร์ ที่ตกกระทบกับแนวตั้งฉากกับความลาดชันของพื้นที่ในกรณีที่พื้นที่มีความลาดชัน

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพ (ก) แสดงแบบจำลองระบบ (ข) มุมตกกระทบเฉพาะที่

8. พิสัยตามแนวเอียงและตามแนวราบ (Slant range and Ground range)

ตรงกันข้ามกับเครื่องวัดเชิงแสง (Optical sensor) เรดาร์จะถ่ายภาพในแนวเอียง ซึ่งเป็นที่ทราบกันดีว่าเป็นทิวทัศน์แนวเฉียง (Oblique perspective) การถ่ายภาพในลักษณะเช่นนี้เพื่อที่จะส่งพัลส์ให้มีปฏิสัมพันธ์กับพื้นผิวโลกในระยะที่เพิ่มขึ้นจากสายอากาศเรดาร์ และได้พิสัยหรือระยะทางของภาพ พิสัยตามแนวเอียงเป็นระยะทางระหว่างเรดาร์กับหน่วยการสะท้อนบนพื้นผิว ซึ่งเป็นการวัดเวลาจากการส่งสัญญาณแรกจนกระทั่งรับสัญญาณกลับสู่เครื่องรับรู้ ข้อมูลดิบของเรดาร์ที่ทำการเก็บข้อมูลตามพิสัยแนวเอียง ซึ่งสามารถคำนวณได้จากความสัมพันธ์

หลักการ ทํา งานของเครื่องรับวิทยุ AM

SR     = พิสัยตามแนวเอียง

c      = ความเร็วของแสง

t         = เวลาระหว่างการส่งพัลส์ และรับสัญญาณกลับ

ผู้ใช้ต้องการข้อมูลที่แสดงข้อมูลตามแนวราบมากกว่าแนวเอียง ระยะทางตามแนวราบเรียกว่าพิสัยตามแนวราบ ซึ่งสามารถคำนวณเมื่อทราบมุมตกกระทบ (θ) ดังนี้

หลักการ ทํา งานของเครื่องรับวิทยุ AM

การประมวลผลภาพเรดาร์จึงจะต้องปรับแก้ข้อมูลในพิสัยตามแนวเอียง มาเป็นพิสัยตามแนวราบ

9. เรดาร์ช่องเปิดจริง และเรดาร์ช่องเปิดสังเคราะห์ (Real and Synthetic Aperture Radars: RAR and SAR)

ในช่วงเริ่มต้นการถ่ายภาพเรดาร์ ระบบเรดาร์เป็นการถ่ายภาพในแนวเฉียงจะเป็นเรดาร์ช่องเปิดจริงซึ่งมีสายอากาศ หรือจานรับส่งสัญญาณแบบติดแน่นบนเครื่องบิน การพัฒนาให้ได้ความความละเอียดดีขึ้นต้องมีสายอากาศขนาดใหญ่ และความยาวคลื่นลดลง ดังนั้นจึงเป็นปัญหาและอุปสรรคในการถ่ายภาพเรดาร์เป็นอย่างมากต่อมาได้มีการพัฒนาเรดาร์ช่องเปิดสังเคราะห์ขึ้นทำให้ลดปัญหาได้มาก ความแตกต่างของระบบเรดาร์ทั้งสองประเภทคือ วิธีการได้มาซึ่งความละเอียดด้านแอซิมัท (Azimuth resolution) ในการถ่ายภาพเรดาร์ไม่ว่าแบบใดความละเอียดในแนวพิสัยเอียงจะเหมือนกัน ส่วนความละเอียดในแนวแอซิมัทหรือแนวการบินจะแตกต่างกันระหว่างเรดาร์ช่องเปิดจริงกับเรดาร์ช่องเปิดสังเคราะห์ เรดาร์ช่องเปิดจริงรับสัญญาณในแนวแอซิมัทขึ้นอยู่กับขนาดของสายอากาศ หากต้องการความแยกชัดที่ละเอียดต้องใช้สายอากาศความมีขนาดใหญ่ขึ้น ส่วนระบบ SAR อาศัยการเคลื่อนที่ต่อเนื่องของสายอากาศและเก็บข้อมูลเป้าหมายหนึ่งๆ สะสมต่อเนื่องตามเวลาที่กำหนด แล้วจึงประมวลผลเพื่อกำหนดความละเอียดและใน SAR จะสังเคราะห์ความกว้างของลำแสงที่แคบ ดังนั้นระบบ SAR จะใช้สายอากาศสั้น และสามารถใช้ช่วงคลื่นที่ยาวขึ้นได้ ทำให้มีความละเอียดดีขึ้น

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพเรดาร์ช่องเปิดจริงและเรดาร์ช่องเปิดสังเคราะห์
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

10. การย่นระยะของภาพเรดาร์ (Foreshortening)

ลักษณะการย่นระยะในภาพเรดาร์คือ ปรากฏการถ่ายภาพที่เกิดขึ้นเมื่อวัตถุบนพื้นที่ในทิวทัศน์ที่มีความลาดเอียงหันหน้าเผชิญหน้าเรดาร์ได้ภาพหดสั้นกว่าความเป็นจริง ในลักษณะของการย่นระยะนี้คลื่นเรดาร์จะชนฐานของพื้นที่ก่อนส่วนยอด ลักษณะการย่นระยะจะได้ภาพสว่างกว่า การย่นระยะสูงสุดเมื่อความลาดชันของพื้นที่ตั้งฉากกับลำแสงของเรดาร์ในกรณีนี้มุมตกกระทบเฉพาะที่จะมีค่าเป็น 0 ผลก็คือทั้งส่วนยอดและส่วนล่างของพื้นที่จะถูกบันทึกภาพพร้อมกัน ดังนั้นจะมีตำแหน่งที่เดียวกัน สำหรับความลาดชันหนึ่งๆ ที่กำหนดให้ผลของการย่นระยะจะลดลงเมื่อเพิ่มมุมตกกระทบ ซึ่งมุมตกกระทบเฉลี่ยเข้าใกล้ 90 ํ ผลการย่นระยะจะถูกลบไปแต่จะปรากฏเงาแทนที่ ในการเลือกมุมตกกระทบมักจะมีการแลกเปลี่ยนหรือแทนที่กัน ระหว่างการปรากฏเงาและการย่นระยะ

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพการย่นระยะ

11. การวางทับ (Layover)

การวางทับ เกิดขึ้นเมื่อเครื่องรับรู้เรดาร์ได้รับพลังงานการสะท้อนกลับของวัตถุส่วนยอดก่อนการกลับของพลังงานสะท้อนของวัตถุส่วนฐาน ดังนั้นตำแหน่งของวัตถุส่วนยอดจะคลาดเคลื่อนจากตำแหน่งจริง โดยแสดงให้เห็นส่วนล่างของวัตถุก่อน ในทางพิสัยใกล้ของภาพถ่ายเรดาร์ การวางทับจะมากขึ้นเมื่อเรขาคณิตการมองภาพที่มีมุมตกกระทบต่ำ เช่น ภาพเรดาร์จากดาวเทียม

หลักการ ทํา งานของเครื่องรับวิทยุ AM

12. เงา (Shadow)

เงาของเรดาร์ แสดงถึง พื้นที่ที่ไม่ถูกกระทบโดยคลื่นเรดาร์ ดังนั้นพื้นที่ส่วนนี้เครื่องรับสัญญาณเรดาร์จะไม่ได้รับสัญญาณสะท้อนกลับเงาจะปรากฏเป็นสีดำในภาพเรดาร์ในภาพถ่ายเรดาร์ เงาจะเกิดขึ้นในทิศทางพิสัยด้านล่างด้านหลังของวัตถุที่สูง เงาเป็นตัวช่วยแสดงทิศทางการถ่ายภาพของเรดาร์ถ้าการพิมพ์คำอธิบายไม่สมบูรณ์หรือหายไป เงาในภาพเรดาร์ให้ข้อมูลเกี่ยวกับเรดาร์ได้หลายประการ เช่น การรบกวนของระบบ และสามารถใช้ประโยชน์ในภาพที่ละเอียดและวิเคราะห์ระบบ ข้อมูลเกี่ยวกับความสูงของวัตถุ และการตีความความสูงต่ำของพื้นที่ สามารถวิเคราะห์จากเงาภาพ

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพเงา

13. พาราแลกซ์ (Parallax) และ Radar Interferometry

ความแตกต่างของระยะทางของตำแหน่งเดียวกันของวัตถุที่ปรากฏในภาพเมื่อถ่ายซ้อนทับกันจากมุมถ่ายภาพที่ต่างกันเรียกว่า พาราแลกซ์ หากมีความแตกต่างกันมากภาพสามารถที่จะแสดงสามมิติได้เด่นชัดขึ้นพาราแลกซ์ของระบบ SAR มีด้วยกัน 3 ประเภท

– ถ่ายภาพที่ความสูงเท่ากันที่ตำแหน่งตรงกันข้าม มีพาราแลกซ์ = DP1 + DP2

– ถ่ายภาพในแนวดิ่งเดียวกัน แตกต่างความสูง มีพาราแลกซ์ = DP1 – DP2

– ถ่ายภาพทิศทางเดียวกันในแนวราบ แต่ระยะทางถึงวัตถุต่างกัน มีพาราแลกซ์ = DP1 – DP2


หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพแสดงพาราแลกซ์ของภาพเรดาร์ทั้งสามประเภทดังกล่าว
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

จากพื้นฐานของระบบเรดาร์ เมื่อส่งสัญญาณจากสายอากาศไปสู่เป้าหมายและรับสัญญาณกลับใน SAR จะบันทึกข้อมูลในแต่ละครั้งที่รับสัญญาณกลับ คือ เวลา ความเข้ม และตำแหน่งของเครื่องรับ ซึ่งเรียกว่าเฟส (Phase) เมื่อเปรียบเทียบความแตกต่างของเฟสที่บันทึกสัญญาณกลับจากตำแหน่งเดียวกันในขณะที่มีการเคลื่อนที่สามารถที่คำนวณระยะทางที่แตกต่างได้ ในการได้มาซึ่งโมเดลความสูงเชิงพื้นที่นั้น จะเป็นการถ่ายภาพในพื้นที่เดียวแต่มีตำแหน่งที่ถ่ายภาพแตกต่างกัน ในการถ่ายภาพของเรดาร์อาจจะมีแนวการบินข้างเดียวกันหรือตรงกันข้าม 2 แนว ที่ความสูงเท่ากัน หรือมีตำแหน่งในแนวตั้งเดียวกัน แต่ความสูงของเครื่องบินต่างกัน โดยอาศัยความแตกต่างของเฟสเราสามารถคำนวณหาความแตกต่างของระดับพื้นที่ได้ ซึ่งเรียกว่า Differential Interferometry

14. Speckle

สัญญาณที่ถ่ายภาพเรดาร์เมื่อกระทบกับสภาพพื้นที่ที่หลากหลายมุมซึ่งขึ้นอยู่กับมุมตกกระทบมุมตกกระทบเฉพาะที่ และอื่นๆ เมื่อรับสัญญาณกลับสู่เครื่องรับจะเกิดความแปรปรวนแบบสุ่มและมักจะมีลักษณะเป็นเม็ดหรือจุดในภาพเรดาร์ เรียกว่า Speckle

Speckle ในบางครั้งก็เป็นประโยชน์ที่ใช้ในการแปลตีความ ในกระบวนการกรองภาพมีวิธีการที่จะลบSpeckle ออกจากภาพซึ่งมีหลากหลายวิธี


          ในการวิเคราะห์ภาพถ่ายเรดาร์แล้วนอกจากพารามิเตอร์ของระบบแล้ว พารามิเตอร์ด้านสิ่งแวดล้อมมีความจำเป็นอย่างยิ่ง เพื่อบูรณาการกับระบบเพื่อให้ได้มาซึ่งองค์ความรู้เพื่อเข้าใจปฏิสัมพันธ์ระหว่างระบบเรดาร์กับสิ่งแวดล้อม ในที่นี้จะกล่าวถึงสิ่งแวดล้อมหรือเป้าหมายที่ควรศึกษาในเบื้องต้น คือ ความขรุขระของพื้นที่ (Roughness characteristics) คุณสมบัติไดอิเล็กทริก (Dielectric properties) ความเป็นเหลี่ยมและการเรียงตัวของเป้าหมาย(Angularity and Orientation of the target) ระยะห่างของเป้าหมาย (Target spacing) การทะลุทะลวงของสัญญาณ(Signal penetration) และการเน้นสัญญาณ (Signal enhancement)

1. ลักษณะของความขรุขระ

เมื่อพื้นผิวราบเรียบการสะท้อนของคลื่นเรดาร์จะเป็นแบบกระจกเงา (Specular reflector) คือ มีมุมตกกระทบเท่ากับมุมสะท้อนพลังงานจะสะท้อนไปยังทิศทางอื่นไม่กลับไปยังระบบบันทึก เมื่อพื้นผิวเริ่มขรุขระขึ้นจะมีพลังงานบางส่วนสะท้อนกลับไปยังระบบ เมื่อความขรุขระมากการสะท้อนจะเป็นแบบแพร่กระจาย (Diffuse reflector)

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพแสดงลักษณะการสะท้อนคลื่นเรดาร์ที่พื้นผิวลักษณะแตกต่างกัน
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

         ความขรุขระของพื้นที่อาจมองได้หลายระดับ ได้แก่ ระดับจุลภาค (Microscale) ระดับกลาง(Mesoscale) และระดับมหัพภาค (Macroscale) ในระดับจุลภาคมักจะกำหนดความขรุขระของพื้นเทียบกับความยาวคลื่น ถ้าหากความแปรปรวนโดยเฉลี่ยของพื้นผิวน้อยกว่า 1/8 ของความยาวคลื่นถือว่ามีพื้นผิวเรียบ เช่น ระบบเรดาร์ L-band มีความยาวคลื่น 15 เซนติเมตร พื้นผิวที่ขรุขระ 2 เซนติเมตร ถือว่ามีพื้นผิวที่ราบเรียบ เป็นต้นการวิเคราะห์ในระบบเรดาร์ ถือว่าระดับจุลภาคเป็นระดับสีของภาพ (Image tone) ส่วนในระดับกลางเป็นระดับที่ถือว่าเป็นระดับความหยาบความละเอียดของภาพ (Image texture) ซึ่งเป็นสภาพที่พื้นที่ป่าไม้ที่มีความสูงของต้นไม้สูงต่ำเป็นกลุ่มๆ ทำให้การกระจัดกระจายกลับในบางส่วนมีความสว่างของภาพสูง บางส่วนเกิดเงาซึ่งถือว่าเป็นการจัดเรียงตัวที่ทำให้เกิดลายผิวที่หยาบ ในระดับมหัพภาคเป็นระดับที่สัมพันธ์กับสภาพพื้นที่ที่มีความลาดชันสูง หรือบริเวณภูเขาความลาดชันที่หันหน้าไปยังระบบบันทึกจะมีการกระจายกลับที่รุนแรง ความขรุขระเมื่อปรับเทียบกับความยาวคลื่นมีผลต่อองค์ประกอบของการสะท้อน และกระจัดกระจายกลับ หากมีความขรุขระมากการกระจัดกระจายกลับมากในทางตรงกันข้ามความขรุขระน้อยจะมีการสะท้อนไปทิศทางอื่น

2. คุณสมบัติไดอิเล็กทริก (Dielectric constant)

ค่าคงตัวไดอิเล็กทริก ของวัตถุบนพื้นโลกเมื่อแห้งจะมีค่าตั้งแต่ 3-8 โดยน้ำมีค่าคงตัวไดอิเล็กทริกประมาณ 80 สัญญาณเรดาร์จะถูกกำหนดโดยความชื้นที่อยู่ในดินและพืช การเพิ่มขึ้นของความชื้นทำให้ลดการทะลุทะลวงของคลื่นเรดาร์ วัตถุที่มีค่าคงตัวไดอิเล็กทริกสูง หรือมีความชื้นสูง จะมีการสะท้อนคลื่นเรดาร์สูง หรือมีแนวโน้มที่จะมีการสะท้อนกลับสูง ในกรณีของพื้นน้ำคลื่นเรดาร์ไม่สามารถผ่านทะลุทะลวงน้ำได้ และน้ำที่มีพื้นผิวราบเรียบจะสะท้อนคลื่นเรดาร์เป็นแบบกระจกเงา คือคลื่นไม่กลับไปยังระบบบันทึกจะมีความเข้มของคลื่นต่ำ หรือมีความสว่างของภาพต่ำ หรือสีภาพเป็นสีดำเข้ม ส่วนดินชื้นจะมีการกระจัดกระจายกลับของสัญญาณเรดาร์สูง

3. ความเป็นเหลี่ยมและการเรียงตัวของเป้าหมาย

ในบางครั้งเรียกว่า ตัวสะท้อนมุม (Corner reflectors) วัตถุขนาดเล็กอาจจะมีความสว่างมากในภาพเรดาร์ ซึ่งขึ้นอยู่กับการวางตัวของวัตถุ ตัวสะท้อนมุมที่สำคัญก็คือวัตถุที่มนุษย์สร้างขึ้น เช่น ด้านข้างของอาคาร สะพานรวมกับความสะท้อนจากพื้นถนน เมื่อพื้นผิวของวัตถุสองชนิดทำมุมฉากกันและเปิดสู่เรดาร์ ทำให้เกิดตัวสะท้อนมุมสองหน้า (Dihedral corner reflector) ตัวสะท้อนมุมสองหน้าจะเกิดการสะท้อนกลับอย่างแรง เมื่อพื้นผิวทั้งสองตั้งฉากกับทิศทางของการส่งคลื่นเรดาร์ ความสะท้อนที่แรงที่สุดเกิดขึ้นจากตัวสะท้อนสามหน้า (Trihedral corner reflector) กรณีเช่นนี้เกิดขึ้นเมื่อพื้นผิวทั้งสามตั้งฉากกับทิศทางของการส่งคลื่นเรดาร์ ตัวสะท้อนมุมใช้ประโยชน์ในการบอกตำแหน่งนักวิจัยมักนิยมสร้างตัวสะท้อนมุมไว้เป็นจุดอ้างอิง

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพความเป็นเหลี่ยมและการเรียงตัวของเป้าหมาย
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

4. การกระจัดกระจายเชิงปริมาตร (Volume scattering)

การกระจัดกระจายเชิงปริมาตรเป็นการกระจัดกระจายที่มีความสัมพันธ์กับกระบวนการกระจัดกระจายหลายทิศทาง เช่น พืชพรรณที่หนาแน่น ประกอบด้วยความสูงความกว้าง และความยาว การกระจัดกระจายเชิงปริมาตรมีความสำคัญ เพราะว่ามันจะมีอิทธิพลต่อการกระจัดกระจายกลับ เรดาร์จะรับพลังงานกลับทั้งจากการกระจัดกระจายบนพื้นผิวดิน กิ่งไม้ ลำต้น ซึ่งถือว่าเป็นปริมาตรความเข้มของการกระจัดกระจายเชิงปริมาตรขึ้นอยู่กับคุณสมบัติทางกายภาพของปริมาตร (ความแปรปรวนของค่าคงที่ไดอิเล็กทริก) และลักษณะของระบบเรดาร์ (ความยาวคลื่นโพลาไรเซชัน และมุมตกกระทบ)

หลักการ ทํา งานของเครื่องรับวิทยุ AM

ภาพการกระจัดกระจายเชิงปริมาตร

5. การทะลุทะลวงของสัญญาณเรดาร์

คลื่นแม่เหล็กไฟฟ้าที่สั้นมีพลังงานสูงกว่าคลื่นยาว ดังนั้นคลื่นสั้นมีปฏิสัมพันธ์ (Interaction) กับวัตถุมากกว่า จึงมีความสามารถทะลุทะลวงได้น้อยกว่าคลื่นยาว ซึ่งมีปฏิสัมพันธ์กับวัตถุน้อยกว่า คลื่นยาวจะสามารถทะลุทะลวงลงไปในวัตถุได้มากกว่าคลื่นสั้น ในตารางได้แสดงแบนด์เรดาร์ ความยาวคลื่น และความสามารถทะลุทะลวงลงไปในพื้นผิวของพื้นที่

แบนด์เรดาร์

ความยาวคลื่น (ซม.)ความลึกที่ทะลุทะลวง (ซม.)ประมาณ

KXC

S

L

P

135

10

25

50

1

3

5

10

25

50


ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

ความสามารถทะลุทะลวงของคลื่นเรดาร์มีค่าประมาณความยาวคลื่นเรดาร์ เช่น K band มีความยาวคลื่น 1 เซนติเมตร จะมีปฏิสัมพันธ์กับพื้นที่มากและทะลุทะลวง ได้เพียง 1 เซนติเมตร P band ความยาวคลื่น 50 เซนติเมตร สามารถทะลุทะลวงลึกถึง 50 เซนติเมตร เพราะฉะนั้น P band จะให้ข้อมูลที่ระดับความลึก 50 เซนติเมตร อย่างไรก็ตามความสามารถที่ทะลุทะลวง ยังขึ้นกับปัจจัยอื่นๆ อีก เช่น ปริมาณความชื้น หากมีปริมาณน้ำในองค์ประกอบของวัตถุใดๆ มาก ความสามารถทะลุทะลวงก็จะลดลง ดังนั้นจะเห็นได้ว่าความสามารถทะลุทะลวงของคลื่นเรดาร์จะเป็นการบูรณาการพารามิเตอร์ของระบบ และพารามิเตอร์ของวัตถุเป้าหมาย/ สิ่งแวดล้อม