การสกัดด้วยตัวทําละลาย solvent extraction

                 หลักการของเครื่องมือซอกห์เลต(soxhlet extraction) ตัวทำละลายที่เราใส่ลงไปในเครื่องมือจะหมุนเวียนผ่านสารที่            เราต้องการสกัดหลายๆครั้ง จนกระทั่งสารที่เราต้องการสกัดออกมามีปริมาณเข้มข้นมากพอ ส่วนตัวทำละลายที่เราใช้สกัดแล้วนั้น           จะถูกทำให้ระเหยแล้วควบแน่นกลับมาใช้ได้อีกต่อไป

การสกัดด้วยตัวทำละลาย from ศศิกัญญา ดอนดีไพร

�����Է�ҹԾ��� ��͡���Ź�������͡���Ź���Ź���ʹ�ҡ��᫹
Chitosan as Coagulant and Coagulant Aid ���͹��Ե ����Թ �Ե�ԪѪ���
Asawin Kittichatchawarl �����Ҩ�������֡�� �� �÷�� ������ķ����� 侾�ó �û����
Asst.Prof. Orathai ChavalparitAsso.Prof. Pipran Pornprapa ����ʶҺѹ ����ŧ�ó�����Է�����. �ѳ�Ե�Է�����
Chulalongkorn University. Bangkok. (Thailand). Graduate School. �дѺ��ԭ�������������´�Ң��Ԫ� �Է�ҹԾ�����Һѳ�Ե. ���ǡ�����ʵ�� (���ǡ����آ��Ժ��)
Master. Engineering (Sanitary Engineering) �շ�診����֡�� 2538 ���Ѵ���(��) �ҹ���ͧ�Ԩ�¹���� ����֡�Ҷ֧��ù���᫹�ҷ��ͺ��������ö 㹡������͡���Ź�������͡���Ź���ʹ�����Ѻ������ ����Ѻ�ӨѴ������� 㹡�кǹ�����͡���Ū�蹴����Ըա�è����ʵ� �·��ͺ㹹�ӴԺ�ѧ������ҡ�Թ�����乷�(Kaolinite)����դ�Ҥ������������� 20,50,100,200 ���300 NTU ����Ҿ��ͪ������鹢ͧ��ӵ�ҧ�ѹ 4 ��Ҥ�� 5,6,7 ��� 8 �͡�ҡ����ѧ���ͧ�Ѻ��ӴԺ�����ҵ��ա 2 ������ҧ�ҡ��ͧ��лҺ���dz�ç��ͧ��Ӻҧࢹ �ҡ��÷��ͧ����� �������᫹����͡���Ź�������öŴ������蹢ͧ������ ����͹�ӴԺ�դ�������٧ (100 NTU ����) ��Ф�Ҿ��ͪ��͹��ҧ�繡ô (���ͪ 5-7)�»���ҳ��᫹������������ҡѺ0.2 ����ԡ�������Ե� ��Ш��ջ���Է���Ҿ㹡��Ŵ����������٧�֧������69,84 ��� 86 ��������蹢ͧ��ӴԺ��ҡѺ 100,200 ��� 300 NTU ����ӴѺ��س�Ҿ�����ѧ���С͹�ѧ���վ����դ����ҡѺ 30,32 ��� 42 NTU����ӴѺ ����֡�һ���Է���Ҿ��áӨѴ�������㹹�� ������᫹����͡���Ź���ʹ�����Ѻ��������Ŵ����ҳ�������������� 30,50 ��� 70 �ͧ����ҳ���������� ���������ö��������Է���Ҿ��áӨѴ����������٧���ҡ������������§���ҧ���� ��觡������᫹����ҳ 0.01-0.2��./�.�����Ѻ��������������� 50 �ͧ����ҳ�����������Ъ�����������Է���Ҿ��áӨѴ���������շ����ͪ�ͧ�����ҡѺ 6-8 �¤�Ҥ�����蹢ͧ�����ѧ��õ��С͹��ӡ����ҵðҹ㹷ء��Ҥ�����蹷�跴�ͧ (¡��鹷��������300 NTU ��о��ͪ 6 ) �ѧ��鹡������᫹����͡���Ź���ʹ㹻���ҳ����������������öŴ����ҳ�������������֧������ 50�·��س�Ҿ�����ѧ��õ��С͹�����ҵðҹ ���Ѵ���(English) This experimental research was to study theapplication of chitosan as coagulant and coagulant aid inwater treatment . The coagulant solution was prepared fromchitosan of Unicord Co.,Ltd which be made by order and theelectrical charge of coagulant solution was measured bycolloid titration method . The effectiveness of chitosan inremoving turbidity as coagulant and coagulant aid weremeasured by jar test methods . Both 5 value of turbidity and4 value of pH in synthetic raw water (20, 50, 100, 200 and300 NTU at pH 5, 6, 7 and 8) and 2 samples natural raw waterfrom klong prapa at bangkang water plant were stidied . As coagulant, chitosan has better capacity in reducedturbidity when water has over 100 NTU turbidity and pH valueabout 5-7 . The efficiency in turbidity removal was 69, 84and 86 percent at 100, 200 and 300 NTU of turbid in water at0.2 mg/l of chitosan but it did not produce goodclarification (residual turbid has about 30-42 NTU ). As coagulant aid, with 30, 50 and 70 percent ofoptimum alum chitosan has more efficiency than used alumalone . With 50 percent of alum (10 mg/l) and chitosan asaid about 0.01 mg/l has produce good clarification (has96-99 precent of turbidity removal and residual turbid wereunder 5 NTU ) at pH about 6-8 and on every valuves ofturbidity (except 300 NTU at pH 6) This findings showed that chitosan could be used ascoagulant aid in water treatment because it showed highefficiency and could reduce the amount of alum dosesignificantly (50 percent) when compared with alum dose andimprove settleablity of flocs . ���ҷ������¹�Է�ҹԾ��� �ӹǹ˹�Ңͧ�Է�ҹԾ��� 132 P. ISBN 974-633-833-1 ʶҹ���Ѵ���Է�ҹԾ��� ���Ӥѭ CHITOSAN, COAGULANT, COAGULANT AID, POLYMER �Է�ҹԾ���������Ǣ�ͧ
���Ѵ���(English) This thesis covers the study for suitable method of cell disruption for Phycocyanin extraction from Spirulina for used as food colourant. The selected method must be suitable for large scale production and not destroy other by product from cell residues such as GLA. High pressure disruption using French Press at 500 Kgf/cm(2) and osmotic shock with 100 mM CaCI(,2) are found to be the most suitable method for cell disruption, high yield but purity (O.D. 620/280) of phycocyanin solution from CaCI(,2) extraction was higher than French Press. To concentrate and increase purity of phycocyanin, the solution was precipitated by salting out with ammonium sulfate. Analytical grade and commercial grade of ammonium sulfate gave the same result for phycocyanin precipitation, both its purity and percentage of recovery. The selected method for phycocyanin extraction from this study is as follows: cell disruption with 100 mM CaCI(,2) , suspended 25 g fresh algae into 100 ml CaCI(,2) , gentely stirred at room temperatur.for 4 hr. After centrifuged, phycocyanin solution was precipitated with 50% (NH(,4)(,2)SO(,4), commercial grade. Precipitate was dialysed. Yield of phycocyanin was about 21 g/ 100 g dry algae or 85% of total phycocyanin in cell and purity about 2.45. Phycocyanin has limited use because phycocyanin is not stable at high temperature and acid or basic conditions. Optmum temperature for used is not higher than 50 degree C and optimum pH is 5-9. Phycocyanin is not stable at room temperature. Storage at 20 degree C is better than 4 degree C. Some organic solvent and glucose and increase phycocyanin stability at room temperature Tested within 100 days, colour of phycocyanin solution were 68%, 83%, 81%, and 75% when 20% propylene glycol, 20% Ethylene glycol, 5% methyl acetate, 5% Glycerol and 20% Glucose were added respectively. Compared with 0.001 M Na-Azide, 1% Citric acid and 0.001 M Na-Propionate were not effective for inhibition of growth of bacteria.